Show simple item record

hal.structure.identifierWeizmann Institute of Science
dc.contributor.authorKlartag, Bo'az
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
hal.structure.identifierDépartement de Mathématiques et Applications - ENS Paris [DMA]
dc.contributor.authorLehec, Joseph
HAL ID: 11520
ORCID: 0000-0001-6182-9427
dc.date.accessioned2019-03-25T16:35:59Z
dc.date.available2019-03-25T16:35:59Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18569
dc.language.isoenen
dc.subjectlog-concave functionsen
dc.subjectlog-concave sequencesen
dc.subject.ddc519en
dc.titlePoisson processes and a log-concave Bernstein theoremen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe discuss interplays between log-concave functions and log-concave sequences. We prove a Bernstein-type theorem, which characterizes the Laplace transform of log-concave measures on the half-line in terms of log-concavity of the alternating Taylor coefficients. We establish concavity inequalities for sequences inspired by the Pr\'ekopa-Leindler and the Walkup theorems. One of our main tools is a stochastic variational formula for the Poisson average.en
dc.relation.isversionofjnlnameStudia Mathematica
dc.relation.isversionofjnlissue247en
dc.relation.isversionofjnldate2019
dc.relation.isversionofjnlpages85-107en
dc.relation.isversionofdoi10.4064/sm180212-30-7en
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-01708514en
dc.relation.isversionofjnlpublisherInstytut Matematyczny- Polska Akademia Nauken
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2019-03-25T16:29:47Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record