Show simple item record

hal.structure.identifierUniversidad de Granada
dc.contributor.authorCañizo, José Alfredo*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorCao, Chuqi*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorEvans, Josephine*
hal.structure.identifier
dc.contributor.authorYoldaş, Havva*
dc.date.accessioned2019-03-26T12:11:40Z
dc.date.available2019-03-26T12:11:40Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18579
dc.language.isoenen
dc.subjectHarris's Theoremen
dc.subjectlinear BGKen
dc.subject.ddc515en
dc.titleHypocoercivity of linear kinetic equations via Harris's Theoremen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe study convergence to equilibrium of the linear relaxation Boltzmann (also known as linear BGK) and the linear Boltzmann equations either on the torus (x, v) ∈ T d × R d or on the whole space (x, v) ∈ R d × R d with a confining potential. We present explicit convergence results in total variation or weighted total variation norms (alternatively L 1 or weighted L 1 norms). The convergence rates are exponential when the equations are posed on the torus, or with a confining potential growing at least quadratically at infinity. Moreover, we give algebraic convergence rates when subquadratic potentials considered. We use a method from the theory of Markov processes known as Harris's Theorem.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages34en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02049210en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-02
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-03-26T10:12:13Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record