• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Forecasting Financial Volatility Using Nested Monte Carlo Expression Discovery

Cazenave, Tristan; Ben Hamida, Sana (2015), Forecasting Financial Volatility Using Nested Monte Carlo Expression Discovery, in IEEE, 2015 IEEE Symposium Series on Computational Intelligence, IEEE - Institute of Electrical and Electronics Engineers : Piscataway, NJ, p. 726-733. 10.1109/SSCI.2015.110

Type
Communication / Conférence
Date
2015
Conference title
2015 IEEE Symposium Series on Computational Intelligence
Conference date
2015-12
Conference city
Cape Town
Conference country
South Africa
Book title
2015 IEEE Symposium Series on Computational Intelligence
Book author
IEEE
Publisher
IEEE - Institute of Electrical and Electronics Engineers
Published in
Piscataway, NJ
ISBN
978-1-4799-7560-0
Pages
726-733
Publication identifier
10.1109/SSCI.2015.110
Metadata
Show full item record
Author(s)
Cazenave, Tristan
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Ben Hamida, Sana cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We are interested in discovering expressions for financial prediction using Nested Monte Carlo Search and Genetic Programming. Both methods are applied to learn from financial time series to generate non linear functions for market volatility prediction. The input data, that is a series of daily prices of European S&P500 index, is filtered and sampled in order to improve the training process. Using some assessment metrics, the best generated models given by both approaches for each training sub sample, are evaluated and compared. Results show that Nested Monte Carlo is able to generate better forecasting models than Genetic Programming for the majority of learning samples.
Subjects / Keywords
Monte Carlo methods; Forecasting; Genetic programming; Time series analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility 
    Ben Hamida, Sana; Cazenave, Tristan (2020) Document de travail / Working paper
  • Thumbnail
    Nested Monte-Carlo Expression Discovery 
    Cazenave, Tristan (2010) Communication / Conférence
  • Thumbnail
    Monte-Carlo expression discovery 
    Cazenave, Tristan (2013) Article accepté pour publication ou publié
  • Thumbnail
    Nested Monte Carlo Search for Two-Player Games 
    Cazenave, Tristan; Saffidine, Abdallah; Schofield, Michael John; Thielscher, Michael (2016) Communication / Conférence
  • Thumbnail
    Parallel Nested Monte-Carlo search 
    Jouandeau, Nicolas; Cazenave, Tristan (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo