Which dictatorial domains are superdictatorial? A complete characterization for the Gibbard-Satterthwaite impossibility
dc.contributor.author | Sanver, Remzi
HAL ID: 184266 | |
dc.contributor.author | Kruger, Justin | |
dc.date.accessioned | 2019-04-08T14:25:17Z | |
dc.date.available | 2019-04-08T14:25:17Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0165-4896 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/18616 | |
dc.language.iso | en | en |
dc.subject.ddc | 511 | en |
dc.title | Which dictatorial domains are superdictatorial? A complete characterization for the Gibbard-Satterthwaite impossibility | |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | A y-dictatorial domain is one over which the Gibbard–Satterthwaite impossibility can be proven. A y-dictatorial domain whose superdomains are all y-dictatorial is qualified to be y-superdictatorial. We provide a complete characterization of y-superdictatorial product domains. | |
dc.relation.isversionofjnlname | Mathematical Social Sciences | |
dc.relation.isversionofjnlvol | 94 | |
dc.relation.isversionofjnldate | 2018 | |
dc.relation.isversionofjnlpages | 32-34 | |
dc.relation.isversionofdoi | 10.1016/j.mathsocsci.2018.04.005 | |
dc.relation.isversionofjnlpublisher | Elsevier | |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2020-06-12T10:11:20Z | |
hal.identifier | hal-02093110 | * |
hal.version | 1 | * |
hal.update.action | updateFiles | * |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |