
Residual Networks for Computer Go
Cazenave, Tristan (2018), Residual Networks for Computer Go, IEEE Transactions on Games, 10, 1, p. 107-110. 10.1109/TCIAIG.2017.2681042
View/ Open
Type
Article accepté pour publication ou publiéDate
2018Journal name
IEEE Transactions on GamesVolume
10Number
1Publisher
IEEE - Institute of Electrical and Electronics Engineers
Pages
107-110
Publication identifier
Metadata
Show full item recordAuthor(s)
Cazenave, TristanLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Deep learning for the game of Go recently had a tremendous success with the victory of AlphaGo against Lee Sedol in March 2016. We propose to use residual networks so as to improve the training of a policy network for computer Go. Training is faster than with usual convolutional networks and residual networks achieve high accuracy on our test set and a four dan level.Subjects / Keywords
Computer Go; deep learning; residual networksRelated items
Showing items related by title and author.
-
Cazenave, Tristan (2017) Communication / Conférence
-
Cazenave, Tristan (2022) Article accepté pour publication ou publié
-
Cazenave, Tristan; Sentuc, Julien; Videau, Mathurin (2022) Communication / Conférence
-
Dang, Chen; Bazgan, Cristina; Cazenave, Tristan; Chopin, Morgan; Wuillemin, Pierre-Henri (2022) Communication / Conférence
-
Cazenave, Tristan; Liu, Jialin; Teytaud, Olivier (2015) Communication / Conférence