• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A recursive point process model for infectious diseases

Schoenberg, Frederic; Hoffman, Marc; Harrigan, Ryan (2019), A recursive point process model for infectious diseases, Annals of the Institute of Statistical Mathematics, p. 31. 10.1007/s10463-018-0690-9

Type
Article accepté pour publication ou publié
External document link
https://hal.archives-ouvertes.fr/hal-01966329
Date
2019
Journal name
Annals of the Institute of Statistical Mathematics
Pages
31
Publication identifier
10.1007/s10463-018-0690-9
Metadata
Show full item record
Author(s)
Schoenberg, Frederic
Department of Statistics, University of California Los Angeles, Los Angeles, CA, United States
Hoffman, Marc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Harrigan, Ryan
Department of Ecology and Evolutionary Biology [DEEB]
Abstract (EN)
We introduce a new type of point process model to describe the incidence of contagious diseases. The model incorporates the premise that when a disease occurs at low frequency in the population, such as in the primary stages of an outbreak, then anyone with the disease is likely to have a high rate of transmission to others, whereas when the disease is prevalent, the transmission rate is lower due to prevention measures and a relatively high percentage of previous exposure in the population. The model is said to be recursive, in the sense that the conditional intensity at any time depends on the productivity associated with previous points, and this productivity in turn depends on the conditional intensity at those points. Basic properties of the model are derived, estimation and simulation are discussed, and the recursive model is shown to fit well to California Rocky Mountain Spotted Fever data.
Subjects / Keywords
Conditional intensity; Contagious diseases; Hawkes process; Productivity

Related items

Showing items related by title and author.

  • Thumbnail
    Modelling microstructure noise with mutually exciting point processes 
    Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Cost of Illness and Disease Severity in a Cohort of French Patients with Parkinson's Disease 
    Ziégler, Marc; Dujardin, Max; Moutard-Martin, Frédéric; Wait, Suzanne; Le Pen, Claude (1999) Article accepté pour publication ou publié
  • Thumbnail
    Nonparametric estimation for interacting particle systems : McKean-Vlasov models 
    Della Maestra, Laëtitia; Hoffmann, Marc (2021) Article accepté pour publication ou publié
  • Thumbnail
    The LAN property for McKean-Vlasov models in a mean-field regime 
    Della Maestra, Laëtitia; Hoffmann, Marc (2023) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo