• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Self-Adjointness of two dimensional Dirac operators on corner domains

Pizzichillo, Fabio; Bosch, Hanne Van Den (2021), Self-Adjointness of two dimensional Dirac operators on corner domains, Journal of Spectral Theory, 11, 3, p. 1043–1079. 10.4171/JST/365

View/Open
1902.05010.pdf (291.3Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Journal of Spectral Theory
Volume
11
Number
3
Publisher
European Mathematical Society
Published in
Paris
Pages
1043–1079
Publication identifier
10.4171/JST/365
Metadata
Show full item record
Author(s)
Pizzichillo, Fabio
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bosch, Hanne Van Den
Abstract (EN)
We study the self-adjointenss of the two-dimensional Dirac operator with Quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains with finitely many corners. For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result is then translated to general domains by a coordinate transformation.
Subjects / Keywords
Dirac operators; self-adjointenss

Related items

Showing items related by title and author.

  • Thumbnail
    Keller estimates of the eigenvalues in the gap of Dirac operators 
    Dolbeault, Jean; Gontier, David; Pizzichillo, Fabio; Van Den Bosch, Hanne (2022) Document de travail / Working paper
  • Thumbnail
    Self-adjointness for Dirac operators via Hardy-Dirac inequalities 
    Esteban, Maria J.; Loss, Michael (2007) Article accepté pour publication ou publié
  • Thumbnail
    On the Essential Self-Adjointness of Singular Sub-Laplacians 
    Franceschi, Valentina; Prandi, Dario; Rizzi, Luca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Dirac operators and shell interactions: a survey 
    Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
  • Thumbnail
    Self-adjointness via Hardy-like inequalities 
    Esteban, Maria J.; Loss, Michael (2008) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo