
Self-Adjointness of two dimensional Dirac operators on corner domains
Pizzichillo, Fabio; Bosch, Hanne Van Den (2019), Self-Adjointness of two dimensional Dirac operators on corner domains. https://basepub.dauphine.fr/handle/123456789/18664
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02018711Date
2019Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
21
Metadata
Show full item recordAuthor(s)
Pizzichillo, FabioCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bosch, Hanne Van Den
Abstract (EN)
We study the self-adjointenss of the two-dimensional Dirac operator with Quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains with finitely many corners. For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result is then translated to general domains by a coordinate transformation.Subjects / Keywords
Dirac operators; self-adjointenssRelated items
Showing items related by title and author.
-
Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2019-07) Document de travail / Working paper
-
Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié
-
Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence
-
Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence
-
Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence