• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Self-Adjointness of two dimensional Dirac operators on corner domains

Pizzichillo, Fabio; Bosch, Hanne Van Den (2019), Self-Adjointness of two dimensional Dirac operators on corner domains. https://basepub.dauphine.fr/handle/123456789/18664

View/Open
1902.05010.pdf (291.3Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02018711
Date
2019
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
21
Metadata
Show full item record
Author(s)
Pizzichillo, Fabio
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bosch, Hanne Van Den
Abstract (EN)
We study the self-adjointenss of the two-dimensional Dirac operator with Quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains with finitely many corners. For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result is then translated to general domains by a coordinate transformation.
Subjects / Keywords
Dirac operators; self-adjointenss

Related items

Showing items related by title and author.

  • Thumbnail
    Two-dimensional Dirac operators with singular interactions supported on closed curves 
    Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2019-07) Document de travail / Working paper
  • Thumbnail
    On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity 
    Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié
  • Thumbnail
    Assetizing the self: how peer-to-peer platforms manage a culture of capitalization. 
    Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence
  • Thumbnail
    Assetizing the self: how peer-to-peer platforms manage a culture of capitalization 
    Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence
  • Thumbnail
    Assetizing the self: how peer-to-peer platforms manage a culture of capitalization 
    Van Den Bussche, Penelope; Dambrin, Claire (2021) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo