
Self-Adjointness of two dimensional Dirac operators on corner domains
Pizzichillo, Fabio; Bosch, Hanne Van Den (2021), Self-Adjointness of two dimensional Dirac operators on corner domains, Journal of Spectral Theory, 11, 3, p. 1043–1079. 10.4171/JST/365
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Journal of Spectral TheoryVolume
11Number
3Publisher
European Mathematical Society
Published in
Paris
Pages
1043–1079
Publication identifier
Metadata
Show full item recordAuthor(s)
Pizzichillo, FabioCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Bosch, Hanne Van Den
Abstract (EN)
We study the self-adjointenss of the two-dimensional Dirac operator with Quantum-dot and Lorentz-scalar δ-shell boundary conditions, on piecewise C2 domains with finitely many corners. For both models, we prove the existence of a unique self-adjoint realization whose domain is included in the Sobolev space H1/2, the formal form domain of the free Dirac operator. The main part of our paper consists of a detailed study of the problem on an infinite sector, where explicit computations can be made: we find the self-adjoint extensions for this case. The result is then translated to general domains by a coordinate transformation.Subjects / Keywords
Dirac operators; self-adjointenssRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Gontier, David; Pizzichillo, Fabio; Van Den Bosch, Hanne (2022) Document de travail / Working paper
-
Esteban, Maria J.; Loss, Michael (2007) Article accepté pour publication ou publié
-
Franceschi, Valentina; Prandi, Dario; Rizzi, Luca (2019) Article accepté pour publication ou publié
-
Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
-
Esteban, Maria J.; Loss, Michael (2008) Communication / Conférence