
A sharp upper bound on the spectral gap for convex graphene quantum dots
Lotoreichik, Vladimir; Ourmières-Bonafos, Thomas (2018), A sharp upper bound on the spectral gap for convex graphene quantum dots. https://basepub.dauphine.fr/handle/123456789/18684
View/ Open
Type
Document de travail / Working paperDate
2018Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
26
Metadata
Show full item recordAuthor(s)
Lotoreichik, VladimirDepartment of Theoretical Physics, Nuclear Physics Institute
Ourmières-Bonafos, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The main result of this paper is a sharp upper bound on the first positive eigenvalue of Dirac operators in two dimensional simply connected C3-domains with infinite mass boundary conditions. This bound is given in terms of a conformal variation, explicit geometric quantities and of the first eigenvalue for the disk. Its proof relies on the min-max principle applied to the squares of these Dirac operators. A suitable test function is constructed by means of a conformal map. This general upper bound involves the norm of the derivative of the underlying conformal map in the Hardy space H2(D). Then, we apply known estimates of this norm for convex and for nearly circular, star-shaped domains in order to get explicit geometric upper bounds on the eigenvalue. These bounds can be re-interpreted as reverse Faber-Krahn-type inequalities under adequate geometric constraints.Subjects / Keywords
Dirac operator; infinite mass boundary condition; lowest eigenvalue; shapeoptimizationRelated items
Showing items related by title and author.
-
Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2018) Document de travail / Working paper
-
Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
-
Moroianu, Andrei; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
-
Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié