• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A sharp upper bound on the spectral gap for convex graphene quantum dots

Lotoreichik, Vladimir; Ourmières-Bonafos, Thomas (2018), A sharp upper bound on the spectral gap for convex graphene quantum dots. https://basepub.dauphine.fr/handle/123456789/18684

View/Open
1812.03029.pdf (294.6Kb)
Type
Document de travail / Working paper
Date
2018
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
26
Metadata
Show full item record
Author(s)
Lotoreichik, Vladimir
Department of Theoretical Physics, Nuclear Physics Institute
Ourmières-Bonafos, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The main result of this paper is a sharp upper bound on the first positive eigenvalue of Dirac operators in two dimensional simply connected C3-domains with infinite mass boundary conditions. This bound is given in terms of a conformal variation, explicit geometric quantities and of the first eigenvalue for the disk. Its proof relies on the min-max principle applied to the squares of these Dirac operators. A suitable test function is constructed by means of a conformal map. This general upper bound involves the norm of the derivative of the underlying conformal map in the Hardy space H2(D). Then, we apply known estimates of this norm for convex and for nearly circular, star-shaped domains in order to get explicit geometric upper bounds on the eigenvalue. These bounds can be re-interpreted as reverse Faber-Krahn-type inequalities under adequate geometric constraints.
Subjects / Keywords
Dirac operator; infinite mass boundary condition; lowest eigenvalue; shapeoptimization

Related items

Showing items related by title and author.

  • Thumbnail
    Effective operator for Robin eigenvalues in domains with corners 
    Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2018) Document de travail / Working paper
  • Thumbnail
    Two-dimensional Dirac operators with singular interactions supported on closed curves 
    Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
  • Thumbnail
    Dirac operators on hypersurfaces as large mass limits 
    Moroianu, Andrei; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
  • Thumbnail
    Dirac operators and shell interactions: a survey 
    Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
  • Thumbnail
    Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential 
    Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo