Show simple item record

hal.structure.identifierLaboratoire de Mathématiques d'Orsay [LMO]
dc.contributor.authorKhalile, Magda
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorOurmières-Bonafos, Thomas
hal.structure.identifierLaboratoire de Mathématiques d'Orsay [LM-Orsay]
dc.contributor.authorPankrashkin, Konstantin
dc.date.accessioned2019-04-17T14:20:14Z
dc.date.available2019-04-17T14:20:14Z
dc.date.issued2018
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/18686
dc.language.isoenen
dc.subjectEigenvalueen
dc.subjectLaplacianen
dc.subjectRobin boundary conditionen
dc.subjecteffective operatoren
dc.subjectnon-smooth domainen
dc.subject.ddc520en
dc.titleEffective operator for Robin eigenvalues in domains with cornersen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schr\odinger-type operator on the boundary of the domain with boundary conditions at the corners."en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages57en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.subject.ddclabelSciences connexes (physique, astrophysique)en
dc.identifier.citationdate2018
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-03-27T09:46:16Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record