• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Subset sum problems with digraph constraints

Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2018), Subset sum problems with digraph constraints, Journal of Combinatorial Optimization, 36, 3, p. 937-964. 10.1007/s10878-018-0262-1

View/Open
155370530534903.pdf (271.0Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Journal of Combinatorial Optimization
Volume
36
Number
3
Publisher
Springer
Pages
937-964
Publication identifier
10.1007/s10878-018-0262-1
Metadata
Show full item record
Author(s)
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Monnot, Jérôme cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tlilane, Lydia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We introduce and study optimization problems which are related to the well-known Subset Sum problem. In each new problem, a node-weighted digraph is given and one has to select a subset of vertices whose total weight does not exceed a given budget. Some additional constraints called digraph constraints and maximality need to be satisfied. The digraph constraint imposes that a node must belong to the solution if at least one of its predecessors is in the solution. An alternative of this constraint says that a node must belong to the solution if all its predecessors are in the solution. The maximality constraint ensures that no superset of a feasible solution is also feasible. The combination of these constraints provides four problems. We study their complexity and present some approximation results according to the type of input digraph, such as directed acyclic graphs and oriented trees.
Subjects / Keywords
Subset sum; Maximal problems; Digraph constraints; Complexity; Directed acyclic graphs; Oriented trees; PTAS

Related items

Showing items related by title and author.

  • Thumbnail
    Approximation polynomiale pour des problèmes de matroïdes bi-objectifs 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2012) Communication / Conférence
  • Thumbnail
    Worst case compromises in matroids with applications to the allocation of indivisible goods 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2015) Article accepté pour publication ou publié
  • Thumbnail
    A parameterized approximation for matroids with multiple objectives 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
  • Thumbnail
    Approximation du point idéal dans des matroïdes: bornes et algorithmes 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
  • Thumbnail
    A matroid approach to the worst case allocation of indivisible goods 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2013) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo