
Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale
Wu, Changye; Stoehr, Julien; Robert, Christian P. (2019), Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale. https://basepub.dauphine.fr/handle/123456789/18740
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-01968795Date
2019Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
18
Metadata
Show full item recordAbstract (EN)
Hamiltonian Monte Carlo samplers have become standard algorithms for MCMC implementations, as opposed to more basic versions, but they still require some amount of tuning and calibration. Exploiting the U-turn criterion of the NUTS algorithm (Hoffman and Gelman, 2014), we propose a version of HMC that relies on the distribution of the integration time of the associated leapfrog integrator. Using in addition the primal-dual averaging method for tuning the step size of the integrator, we achieve an essentially calibration free version of HMC. When compared with the original NUTS on several benchmarks, this algorithm exhibits a significantly improved efficiency.Subjects / Keywords
Acceleration methods, No-U-Turn SamplerRelated items
Showing items related by title and author.
-
Wu, Changye; Robert, Christian P. (2020) Chapitre d'ouvrage
-
Wu, Changye (2018-10-04) Thèse
-
Barthelme, Simon; Beffy, Magali; Chopin, Nicolas; Doucet, Arnaud; Jacob, Pierre E.; Johansen, Adam M.; Marin, Jean-Michel; Robert, Christian P. (2011) Document de travail / Working paper
-
Jacob, Pierre E.; Chopin, Nicolas; Robert, Christian P.; Rue, Havard (2009) Document de travail / Working paper
-
Robert, Christian P.; Marin, Jean-Michel; Iacobucci, Alessandra (2010) Article accepté pour publication ou publié