
A short note on the operator norm upper bound for sub-Gaussian tailed random matrices
Benhamou, Eric; Atif, Jamal; Laraki, Rida (2019-01), A short note on the operator norm upper bound for sub-Gaussian tailed random matrices. https://basepub.dauphine.fr/handle/123456789/18906
View/ Open
Type
Document de travail / Working paperDate
2019-01Publisher
Preprint Lamsade
Series title
Preprint LamsadePublished in
Paris
Pages
12
Metadata
Show full item recordAuthor(s)
Benhamou, EricLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Laraki, Rida

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This paper investigates an upper bound of the operator norm for sub-Gaussian tailed random matrices. A lot of attention has been put on uniformly bounded sub-Gaussian tailed random matrices with independent coefficients. However, little has been done for sub-Gaussian tailed random matrices whose matrix coefficients variance are not equal or for matrix for which coefficients are not independent. This is precisely the subject of this paper. After proving that random matrices with uniform sub-Gaussian tailed independent coefficients satisfy the Tracy Widom bound, that is,their matrix operator norm remains bounded by O(√n) with overwhelming probability, we prove that a less stringent condition is that the matrix rows are independent and uniformly sub-Gaussian. This does not impose in particular that all matrix coefficients are independent, but only their rows, which is a weaker condition.Subjects / Keywords
sub-Gaussian tailed random matricesRelated items
Showing items related by title and author.
-
Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
-
Benhamou, Éric; Atif, Jamal; Laraki, Rida; Saltiel, David (2020) Document de travail / Working paper
-
Benhamou, Eric; Atif, Jamal; Laraki, Rida (2018) Document de travail / Working paper
-
Benhamou, Eric; Atif, Jamal; Laraki, Rida (2018) Document de travail / Working paper
-
Benhamou, Éric; Saltiel, David; Laraki, Rida; Atif, Jamal (2020) Document de travail / Working paper