• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Constructive algorithm for path-width of matroids

Jeong, Jisu; Kim, Eun Jung; Oum, Sang-il (2016), Constructive algorithm for path-width of matroids, dans Krauthgamer, Robert, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, p. 1695-1704. 10.1137/1.9781611974331.ch116

Type
Communication / Conférence
Lien vers un document non conservé dans cette base
https://arxiv.org/abs/1507.02184v1
Date
2016
Titre du colloque
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016)
Date du colloque
2016-01
Ville du colloque
Arlington, Virginia
Pays du colloque
United States
Titre de l'ouvrage
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
Auteurs de l’ouvrage
Krauthgamer, Robert
Éditeur
Society for Industrial and Applied Mathematics
Isbn
978-1-61197-433-1
Nombre de pages
2106 (3 Vols)
Pages
1695-1704
Identifiant publication
10.1137/1.9781611974331.ch116
Métadonnées
Afficher la notice complète
Auteur(s)
Jeong, Jisu
Department of Mathematical Sciences, KAIST
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Oum, Sang-il
Department of Mathematical Sciences, KAIST
Résumé (EN)
Given n subspaces of a finite-dimensional vector space over a fixed finite field F, we wish to find a linear layout V1, V2, …, Vn of the subspaces such that dim((V1 + V2 + ⃛ + Vi)∩(Vi+1 + ⃛ + Vn)) ≤ k for all i; such a linear layout is said to have width at most k. When restricted to 1-dimensional subspaces, this problem is equivalent to computing the path-width of an F-represented matroid in matroid theory and computing the trellis-width (or minimum trellis state-complexity) of a linear code in coding theory.We present a fixed-parameter tractable algorithm to construct a linear layout of width at most k, if it exists, for input subspaces of a finite-dimensional vector space over F. As corollaries, we obtain a fixed-parameter tractable algorithm to produce a path-decomposition of width at most k for an input F-represented matroid of path-width at most k, and a fixed-parameter tractable algorithm to find a linear rank-decomposition of width at most k for an input graph of linear rank-width at most k. In both corollaries, no such algorithms were known previously. Our approach is based on dynamic programming combined with the idea developed by Bodlaender and Kloks (1996) for their work on path-width and tree-width of graphs.It was previously known that a fixed-parameter tractable algorithm exists for the decision version of the problem for matroid path-width; a theorem by Geelen, Gerards, and Whittle (2002) implies that for each fixed finite field F, there are finitely many forbidden F-representable minors for the class of matroids of path-width at most k. An algorithm by Hliněný (2006) can detect a minor in an input F-represented matroid of bounded branch-width. However, this indirect approach would not produce an actual path-decomposition even if the complete list of forbidden minors were known. Our algorithm is the first one to construct such a path-decomposition and does not depend on the finiteness of forbidden minors.
Mots-clés
algorithms

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    An FPT 2-Approximation for Tree-Cut Decomposition 
    Kim, Eun Jung; Oum, Sang-il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2018) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    An FPT 2-Approximation for Tree-cut Decomposition 
    Kim, Eun Jung; Oum, Sang-Il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2015) Communication / Conférence
  • Vignette de prévisualisation
    On the tree-width of even-hole-free graphs 
    Aboulker, Pierre; Adler, Isolde; Kim, Eun Jung; Sintiari, Ni Luh Dewi; Trotignon, Nicolas (2021) Document de travail / Working paper
  • Vignette de prévisualisation
    Twin-width VI: the lens of contraction sequences 
    Bonnet, Edouard; Kim, Eun Jung; Reinald, Amadeus; Thomassé, Stéphan (2022) Communication / Conférence
  • Vignette de prévisualisation
    A polynomial-time algorithm for Outerplanar Diameter Improvement 
    Cohen, Nathann; Gonçalves, Daniel; Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo