Parameterized Edge Hamiltonicity
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Lampis, Michael
HAL ID: 182546 ORCID: 0000-0002-5791-0887 | |
hal.structure.identifier | Research Institute for Mathematical Sciences [RIMS] | |
dc.contributor.author | Makino, Kazuhisa | |
hal.structure.identifier | Laboratoire d'InfoRmatique en Image et Systèmes d'information [LIRIS] | |
dc.contributor.author | Mitsou, Valia | |
hal.structure.identifier | ||
dc.contributor.author | Uno, Yushi | |
dc.date.accessioned | 2019-06-26T09:45:36Z | |
dc.date.available | 2019-06-26T09:45:36Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0166-218X | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/19039 | |
dc.language.iso | en | en |
dc.subject | Edge Hamiltonicity | en |
dc.subject | Fixed parameter tractability | en |
dc.subject | Structural parameterization | en |
dc.subject | Polynomial kernel | en |
dc.subject.ddc | 511 | en |
dc.title | Parameterized Edge Hamiltonicity | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. (2014) by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. As an interesting consequence, we show that this implies an FPT algorithm for (Vertex) Hamiltonian Path parameterized by (vertex) clique cover. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W[1]-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke. | en |
dc.relation.isversionofjnlname | Discrete Applied Mathematics | |
dc.relation.isversionofjnlvol | 248 | en |
dc.relation.isversionofjnldate | 2018-10 | |
dc.relation.isversionofjnlpages | 68-78 | en |
dc.relation.isversionofdoi | 10.1016/j.dam.2017.04.045 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2019-03-31T15:01:38Z | |
hal.identifier | hal-02165855 | * |
hal.version | 1 | * |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |