Defective Coloring on Classes of Perfect Graphs
Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2017), Defective Coloring on Classes of Perfect Graphs, in Bodlaender, Hans L.; Woeginger, Gerhard J., Graph-Theoretic Concepts in Computer Science, 43rd International Workshop, WG 2017, Revised Selected Papers, Springer International Publishing : Cham, p. 113-126. 10.1007/978-3-319-68705-6_9
Type
Communication / ConférenceExternal document link
https://arxiv.org/abs/1702.08903v2Date
2017Conference title
43rd International Workshop (WG 2017)Conference date
2017-07Conference city
EindhovenConference country
NetherlandsBook title
Graph-Theoretic Concepts in Computer Science, 43rd International Workshop, WG 2017, Revised Selected PapersBook author
Bodlaender, Hans L.; Woeginger, Gerhard J.Publisher
Springer International Publishing
Published in
Cham
ISBN
978-3-319-68704-9
Number of pages
440Pages
113-126
Publication identifier
Metadata
Show full item recordAuthor(s)
Belmonte, Rémyautre
Lampis, Michael

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Mitsou, Valia
Laboratoire d'InfoRmatique en Image et Systèmes d'information [LIRIS]
Abstract (EN)
In Defective Coloring we are given a graph G and two integers χd,Δ∗ and are asked if we can χd -color G so that the maximum degree induced by any color class is at most Δ∗ . We show that this natural generalization of Coloring is much harder on several basic graph classes. In particular, we show that it is NP-hard on split graphs, even when one of the two parameters χd,Δ∗ is set to the smallest possible fixed value that does not trivialize the problem ( χd=2 or Δ∗=1 ). Together with a simple treewidth-based DP algorithm this completely determines the complexity of the problem also on chordal graphs.We then consider the case of cographs and show that, somewhat surprisingly, Defective Coloring turns out to be one of the few natural problems which are NP-hard on this class. We complement this negative result by showing that Defective Coloring is in P for cographs if either χd or Δ∗ is fixed; that it is in P for trivially perfect graphs; and that it admits a sub-exponential time algorithm for cographs when both χd and Δ∗ are unbounded.Subjects / Keywords
Defective coloringRelated items
Showing items related by title and author.
-
Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2022) Article accepté pour publication ou publié
-
Belmonte, Rémy; Lampis, Michael; Mitsou, Valia (2020) Article accepté pour publication ou publié
-
Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota; Sikora, Florian (2019) Communication / Conférence
-
Sikora, Florian; Belmonte, Rémy; Kim, Eun Jung; Lampis, Michael; Mitsou, Valia; Otachi, Yota (2020) Article accepté pour publication ou publié
-
Belmonte, Rémy; Mitsou, Valia (2018) Communication / Conférence