• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Graph-based Clustering under Differential Privacy

Pinot, Rafael; Morvan, Anne; Yger, Florian; Gouy-Pailler, Cédric; Atif, Jamal (2018), Graph-based Clustering under Differential Privacy, in Globerson, Amir; Silva, Ricardo, Uncertainty in Artificial Intelligence (UAI) - Proceedings of the Thirty-Fourth Conference (2018), AUAI Press : Corvallis (Oregon, USA), p. 329-338

View/Open
132.pdf (367.1Kb)
Type
Communication / Conférence
Date
2018
Conference title
Conference on Uncertainty in Artificial Intelligence (UAI 2018)
Conference date
2018-08
Conference city
Monterey, California
Conference country
United States
Book title
Uncertainty in Artificial Intelligence (UAI) - Proceedings of the Thirty-Fourth Conference (2018)
Book author
Globerson, Amir; Silva, Ricardo
Publisher
AUAI Press
Published in
Corvallis (Oregon, USA)
Pages
329-338
Metadata
Show full item record
Author(s)
Pinot, Rafael
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Morvan, Anne
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Yger, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gouy-Pailler, Cédric cc
Laboratoire d'Intégration des Systèmes et des Technologies [LIST (CEA)]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper, we present the first differentially private clustering method for arbitrary-shaped node clusters in a graph. This algorithm takes as input only an approximate Minimum Spanning Tree (MST) T released under weight differential privacy constraints from the graph. Then, the underlying nonconvex clustering partition is successfully recovered from cutting optimal cuts on T. As opposed to existing methods, our algorithm is theoretically well-motivated. Experiments support our theoretical findings.
Subjects / Keywords
graphs

Related items

Showing items related by title and author.

  • Thumbnail
    A unified view on differential privacy and robustness to adversarial examples 
    Pinot, Rafaël; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Graph sketching-based Space-efficient Data Clustering 
    Morvan, Anne; Choromanski, Krzysztof; Gouy-Pailler, Cedric; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Theoretical evidence for adversarial robustness through randomization 
    Pinot, Rafaël; Meunier, Laurent; Araújo, Alexandre; Kashima, Hisashi; Yger, Florian; Gouy-Pailler, Cedric; Atif, Jamal (2019) Communication / Conférence
  • Thumbnail
    Structured adaptive and random spinners for fast machine learning computations 
    Bojarski, Mariusz; Choromanska, Anna; Choromanski, Krzysztof; Fagan, Francois; Gouy-Pailler, Cédric; Morvan, Anne; Sakr, Nourhan; Sarlos, Tamas; Atif, Jamal (2017) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo