Correlation-Based Pre-Filtering for Context-Aware Recommendation
Vahidi Ferdousi, Zahra; Colazzo, Dario; Negre, Elsa (2018), Correlation-Based Pre-Filtering for Context-Aware Recommendation, in Roussos, George; Kameas, Achilles, 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Institute of Electrical and Electronics Engineers. 10.1109/PERCOMW.2018.8480278
Type
Communication / ConférenceDate
2018Conference title
2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)Conference date
2018-03Conference city
AthensConference country
GreeceBook title
2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)Book author
Roussos, George; Kameas, AchillesPublisher
Institute of Electrical and Electronics Engineers
ISBN
978-1-5386-3227-7
Publication identifier
Metadata
Show full item recordAuthor(s)
Vahidi Ferdousi, ZahraLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Colazzo, Dario
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Negre, Elsa
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
With the increasing use of connected devices and IoT, users' contextual information is more and more available and used in different information systems. One of the domains where the use of contextual information is promising is that of recommendation. As a matter of fact, context-aware recommender systems (CARSs) have demonstrated that taking contextual information about users into account can improve the effectiveness of recommendation, by generating more relevant recommendations to the users in their specific contextual situation. In this paper we propose a new context representation and approach to integrate this kind of information into a recommender system. We make a strong representation of the context, based on the influence of context on ratings, calculated using the Pearson Correlation Coefficient. We do a pre-filtering recommendation based on this representation. Our evaluations demonstrate that our approach can outperforms the state of the art.Subjects / Keywords
Context-Aware Recommender System; Contextual Information Integration; Contextual Pre-Filtering; Collaborative Filtering; Matrix FactorizationRelated items
Showing items related by title and author.
-
Vahidi Ferdousi, Zahra; Negre, Elsa; Colazzo, Dario (2017) Communication / Conférence
-
Li, Siying; Abel, Marie-Helene; Negre, Elsa (2021) Communication / Conférence
-
Negre, Elsa; Ravat, Franck; Teste, Olivier (2023) Communication / Conférence
-
Vahidi Ferdousi, Zahra (2020-12-18) Thèse
-
Vahidi Ferdousi, Zahra; Colazzo, Dario; Negre, Elsa (2018) Communication / Conférence