The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Cornaz, Denis | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Magnouche, Youcef | * |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Mahjoub, Ali Ridha | * |
hal.structure.identifier | Laboratoire de Conception, Optimisation et Modélisation des Systèmes [LCOMS] | |
dc.contributor.author | Martin, Sébastien
HAL ID: 9612 ORCID: 0000-0001-8980-8628 | * |
dc.date.accessioned | 2019-07-17T10:28:55Z | |
dc.date.available | 2019-07-17T10:28:55Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0166-218X | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/19249 | |
dc.language.iso | en | en |
dc.subject | Vertex separator problem | en |
dc.subject | Integer programming | en |
dc.subject | Polytope | en |
dc.subject | Facet | en |
dc.subject | Branch-and-Cut algorithm | en |
dc.subject | Complexity | en |
dc.subject | Separation algorithm | en |
dc.subject.ddc | 519 | en |
dc.title | The multi-terminal vertex separator problem: Polyhedral analysis and Branch-and-Cut | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we consider a variant of the k-separator problem. Given a graph G=(V∪T,E) with V∪T the set of vertices, where T is a set of k terminals, the multi-terminal vertex separator problem consists in partitioning V∪T into k+1 subsets {S,V1,...,Vk} such that there is no edge between two different subsets Vi and Vj, each Vi contains exactly one terminal and the size of S is minimum. In this paper, we first show that the problem is NP-hard. Then we give two integer programming formulations for the problem. For one of these formulations, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the problem, along with an extensive computational study. | en |
dc.relation.isversionofjnlname | Discrete Applied Mathematics | |
dc.relation.isversionofjnlvol | 256 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2019-03 | |
dc.relation.isversionofjnlpages | 11-37 | en |
dc.relation.isversionofdoi | 10.1016/j.dam.2018.10.005 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | oui | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2019-07-17T10:20:52Z | |
hal.identifier | hal-02186511 | * |
hal.version | 1 | * |
hal.update.action | updateMetadata | * |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |