A stochastic target formulation for optimal switching problems in finite horizon
Bouchard, Bruno (2009), A stochastic target formulation for optimal switching problems in finite horizon, Stochastics, 81, 2, p. 171 - 197. http://dx.doi.org/10.1080/17442500802327360
Type
Article accepté pour publication ou publiéDate
2009-09-24Journal name
StochasticsVolume
81Number
2Publisher
Taylor & Francis
Pages
171 - 197
Publication identifier
Metadata
Show full item recordAuthor(s)
Bouchard, BrunoAbstract (EN)
We consider a general optimal switching problem for a controlled diffusion and show that its value coincides with the value of a well-suited stochastic target problem associated to a diffusion with jumps. The proof consists in showing that the Hamilton-Jacobi-Bellman equations of both problems are the same and in proving a comparison principle for this equation. This provides a new family of lower bounds for the optimal switching problem, which can be computed by Monte-Carlo methods. This result has also a nice economical interpretation in terms of a firm's valuation.Subjects / Keywords
Viscosity solutions; Optimal ControlRelated items
Showing items related by title and author.
-
Bouchard, Bruno; Dang, Ngoc Minh (2013) Article accepté pour publication ou publié
-
Bouchard, Bruno; Dang, Ngoc Minh (2012) Article accepté pour publication ou publié
-
Bouchard, Bruno; Vu, Thanh Nam (2012) Article accepté pour publication ou publié
-
Kharroubi, Idris (2016) Article accepté pour publication ou publié
-
Bouchard, Bruno (2009) Communication / Conférence