• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Flocking : Phase transition and asymptotic behaviour

Li, Xingyu (2019-06), Flocking : Phase transition and asymptotic behaviour. https://basepub.dauphine.fr/handle/123456789/19390

View/Open
Flocking13(1).pdf (403.7Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02143985
Date
2019-06
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
20
Metadata
Show full item record
Author(s)
Li, Xingyu
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is devoted to a continuous Cucker-Smale model with noise, which has isotropic and polarized stationary solutions depending on the intensity of the noise. The first result establishes the threshold value of the noise parameter which drives the phase transition. This threshold value is used to classify all stationary solutions and their linear stability properties. Using an entropy, these stability properties are extended to the non-linear regime. The second result is concerned with the asymptotic behaviour of the solutions of the evolution problem. In several cases, we prove that stable solutions attract the other solutions with an optimal exponential rate of convergence determined by the spectral gap of the linearized problem around the stable solutions. The spectral gap has to be computed in a norm adapted to the non-local term.
Subjects / Keywords
symmetry breaking; free energy; large time asymp- totics; Flocking model; phase transition; asymptotic rate of convergence AMS subject classifications; asymptotic rate of convergence; spectral gap; stability

Related items

Showing items related by title and author.

  • Thumbnail
    L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system 
    Addala, Lanoir; Dolbeault, Jean; Li, Xingyu; Lazhar Tayeb, Mohamed (2021) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behavior of Nernst-Planck equation 
    Li, Xingyu (2019) Document de travail / Working paper
  • Thumbnail
    Large Time Asymptotic Behaviors of Two Types of Fast Diffusion Equations 
    Cao, Chuqi; Li, Xingyu (2021) Document de travail / Working paper
  • Thumbnail
    φ -Entropies: convexity, coercivity and hypocoercivity for Fokker–Planck and kinetic Fokker–Planck equations 
    Dolbeault, Jean; Li, Xingyu (2018) Article accepté pour publication ou publié
  • Thumbnail
    Generalized Sobolev Inequalities and Asymptotic Behaviour in Fast Diffusion and Porous Medium Problems 
    Dolbeault, Jean; Del Pino, Manuel (1999) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo