
A probabilistic approach of ultraviolet renormalisation in the boundary Sine-Gordon model
Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent (2022), A probabilistic approach of ultraviolet renormalisation in the boundary Sine-Gordon model, Probability Theory and Related Fields, p. 24. 10.1007/s00440-022-01174-5
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2022Nom de la revue
Probability Theory and Related FieldsÉditeur
Springer
Ville d’édition
Paris
Pages
24
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Lacoin, HubertCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Rhodes, Rémi
Institut de Mathématiques de Marseille [I2M]
Vargas, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
The Sine-Gordon model is obtained by tilting the law of a log-correlated Gaussian field X defined on a subset of R d by the exponential of its cosine, namely exp(α ∫ cos(βX)). It is an important model in quantum field theory or in statistic physics like in the study of log-gases. In spite of its relatively simple definition, the model has a very rich phenomenology. While the integral ∫ cos(βX) can properly be defined when β 2 < d using the standard Wick normalisation of cos(βX), a more involved renormalization procedure is needed when β 2 ∈ [d, 2d). In particular it exhibits a countable sequence of phase transition accumulating to the left of β = √ 2d, each transitions corresponding to the addition of an extra term in the renormalization scheme. The final threshold β = √ 2 corresponds to the Kosterlitz-Thouless (KT) phase transition of the log-gas. In this paper, we present a novel probabilistic approach to renormalization of the two-dimensional boundary (or 1-dimensional) Sine-Gordon model up to the KT threshold β = √ 2. The purpose of this approach is to propose a simple and flexible method to treat this problem which, unlike the existing renormalization group techniques, does not rely on translation invariance for the covariance kernel of X or the reference measure along which cos(βX) is integrated. To this purpose we establish by induction a general formula for the cumulants of a random variable defined on a filtered probability space expressed in terms of brackets of a family of martingales; to the best of our knowledge, the recursion formula is new and might have other applications. We apply this formula to study the cumulants of (approximations of) ∫ cos(βX). To control all terms produced by the induction proceedure, we prove a refinement of classical electrostatic inequalities, which allows to bound the energy of configurations in terms of the Wasserstein distance between + and − charges.Mots-clés
Boundary Sine-Gordon; renormalization; Onsager inequality; charge correlation functionsPublications associées
Affichage des éléments liés par titre et auteur.
-
Vargas, Vincent; Rhodes, Rémi; Lacoin, Hubert (2014) Document de travail / Working paper
-
Lacoin, Hubert; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
-
Rhodes, Rémi; Vargas, Vincent; Domenge, Jean-Christophe (2010) Document de travail / Working paper
-
Vargas, Vincent; Rhodes, Rémi; Garban, Christophe (2014) Article accepté pour publication ou publié
-
Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié