• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation

Nguyen, Minh-Lien; Lacour, Claire; Rivoirard, Vincent (2022), Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation, Journal of Machine Learning Research, 23, 254, p. 1−74

View/Open
Rodeo-Adap-HAL.pdf (572.1Kb)
Type
Article accepté pour publication ou publié
External document link
https://www.jmlr.org/papers/volume23/21-0582/21-0582.pdf
Date
2022
Journal name
Journal of Machine Learning Research
Volume
23
Number
254
Publisher
Microtome Publishing
Published in
Paris
Pages
1−74
Metadata
Show full item record
Author(s)
Nguyen, Minh-Lien
Laboratoire de Mathématiques d'Orsay [LMO]
Lacour, Claire
Laboratoire d'Analyse et de Mathématiques Appliquées [LAMA]
Rivoirard, Vincent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper studies the estimation of the conditional density f (x, ·) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) ∈ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d. We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).
Subjects / Keywords
sparsity; greedy algorithm; kernel density estima- tors; minimax rates; high dimension; conditional density; nonparametric inference

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive pointwise estimation of conditional density function 
    Bertin, Karine; Lacour, Claire; Rivoirard, Vincent (2016) Article accepté pour publication ou publié
  • Thumbnail
    Numerical performance of Penalized Comparison to Overfitting for multivariate kernel density estimation 
    Varet, Suzanne; Lacour, Claire; Massart, Pascal; Rivoirard, Vincent (2019) Document de travail / Working paper
  • Thumbnail
    Estimator selection: a new method with applications to kernel density estimation 
    Lacour, Claire; Massart, Pascal; Rivoirard, Vincent (2017) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive warped kernel estimation for nonparametric regression with circular responses 
    Nguyen, Tien-Dat; Pham Ngoc, Thanh Mai; Rivoirard, Vincent (2022) Document de travail / Working paper
  • Thumbnail
    Uniform Deconvolution for Poisson Point Processes 
    Bonnet, Anna; Lacour, Claire; Picard, Franck; Rivoirard, Vincent (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo