• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

The planning problem in mean field games as regularizedmass transport

Graber, Philip Jameson; Mészáros, Alpár Richárd; Silva, Francisco J.; Tonon, Daniela (2019), The planning problem in mean field games as regularizedmass transport, Calculus of Variations and Partial Differential Equations, 58, 3. 10.1007/s00526-019-1561-9

Type
Article accepté pour publication ou publié
Date
2019
Journal name
Calculus of Variations and Partial Differential Equations
Volume
58
Number
3
Publisher
Springer
Publication identifier
10.1007/s00526-019-1561-9
Metadata
Show full item record
Author(s)
Graber, Philip Jameson

Mészáros, Alpár Richárd

Silva, Francisco J.

Tonon, Daniela
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper, using variational approaches, we investigate the first order planning problem arising in the theory of mean field games. We show the existence and uniqueness of weak solutions of the problem in the case of a large class of Hamiltonians with arbitrary superlinear order of growth at infinity and local coupling functions. We require the initial and final measures to be merely summable. At the same time [relying on the techniques developed recently in Graber and Mészáros (Ann Inst H Poincaré Anal Non Linéaire 35(6):1557–1576, 2018)], under stronger monotonicity and convexity conditions on the data, we obtain Sobolev estimates on the solutions of the planning problem both for space and time derivatives.
Subjects / Keywords
mean field games

Related items

Showing items related by title and author.

  • Thumbnail
    Second order mean field games with degenerate diffusion and local coupling 
    Cardaliaguet, Pierre; Graber, Philip Jameson; Porretta, Alessio; Tonon, Daniela (2015) Article accepté pour publication ou publié
  • Thumbnail
    Degenerate second order mean field games systems 
    Porretta, Alessio; Graber, Philip Jameson; Cardaliaguet, Pierre; Tonon, Daniela (2014) Communication / Conférence
  • Thumbnail
    Mean field games systems of first order 
    Cardaliaguet, Pierre; Graber, Philip Jameson (2015) Article accepté pour publication ou publié
  • Thumbnail
    Time-dependent focusing Mean-Field Games: the sub-critical case 
    Cirant, Marco; Tonon, Daniela (2019) Article accepté pour publication ou publié
  • Thumbnail
    Optimality conditions (In Pontryagin form) 
    Aronna, Maria Soledad; Tonon, Daniela; Boccia, Andrea; Campos, Cédric Martínez; Mazzola, Marco; Nguyen, Luong Van; Palladino, Michele; Scarinci, Teresa; Silva, Francisco J. (2017) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo