
Regularity of many-body Schrödinger evolution equation and its application to numerical analysis
Meng, Long (2019-05), Regularity of many-body Schrödinger evolution equation and its application to numerical analysis. https://basepub.dauphine.fr/handle/123456789/19410
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02129838Date
2019-05Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
29
Metadata
Show full item recordAbstract (EN)
A decade ago, the mixed regularity of stationary many-body Schr\"o\-dinger equation has been studied by Harry Yserentant through the Pauli Principle and the Hardy inequality (Uncertainty Principle). In this article, we prove that the many-body evolution Schr\"odinger equation has a similar mixed regularity if the initial data u0 satisfies the Pauli Principle. By generalization of the Strichartz estimates, our method also applies to the numerical approximation of this problem: based on these mixed derivatives, we design a new approximation which can hugely improve the computing capability especially in quantum chemistry.Subjects / Keywords
many-body Schrödinger evolution equationRelated items
Showing items related by title and author.
-
Garrigue, Louis (2020) Article accepté pour publication ou publié
-
Garrigue, Louis (2018) Article accepté pour publication ou publié
-
A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems Abanin, Dmitry A.; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François (2017) Article accepté pour publication ou publié
-
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2021) Article accepté pour publication ou publié
-
Meng, Long (2019) Document de travail / Working paper