The obstacle version of the Geometric Dynamic Programming Principle: Application to the pricing of American options under constraints
Bouchard, Bruno; Vu, Thanh Nam (2010), The obstacle version of the Geometric Dynamic Programming Principle: Application to the pricing of American options under constraints, Applied Mathematics and Optimization, 61, 2, p. 235-265. http://dx.doi.org/10.1007/s00245-009-9084-y
Type
Article accepté pour publication ou publiéDate
2010Journal name
Applied Mathematics and OptimizationVolume
61Number
2Publisher
Springer
Pages
235-265
Publication identifier
Metadata
Show full item recordAbstract (EN)
We provide an obstacle version of the Geometric Dynamic ProgrammingPrinciple of Soner and Touzi (J. Eur. Math. Soc. 4:201–236, 2002) for stochastictarget problems. This opens the doors to a wide range of applications, particularly inrisk control in finance and insurance, in which a controlled stochastic process has tobe maintained in a given set on a time interval [0,T ]. As an example of application,we show how it can be used to provide a viscosity characterization of the super-hedging cost of American options under portfolio constraints, without appealing tothe standard dual formulation from mathematical finance. In particular, we allow fora degenerate volatility, a case which does not seem to have been studied so far in thiscontext.Subjects / Keywords
Discontinuous viscosity solutions; Stochastic targetRelated items
Showing items related by title and author.
-
Bouchard, Bruno (2008) Article accepté pour publication ou publié
-
Bouchard, Bruno; Chau, Ki; Manai, Arij; Sid-Ali, Ahmed (2019) Article accepté pour publication ou publié
-
Bouchard, Bruno; Chassagneux, Jean-François (2009) Article accepté pour publication ou publié
-
Blanchet, Adrien (2006) Article accepté pour publication ou publié
-
Bouchard, Bruno; Dang, Ngoc Minh (2013) Article accepté pour publication ou publié