• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Numerical reconstruction of the first band(s) in an inverse Hill's problem

Bakhta , Athmane; Ehrlacher, Virginie; Gontier, David (2020), Numerical reconstruction of the first band(s) in an inverse Hill's problem, ESAIM. Control, Optimisation and Calculus of Variations, 26, 59. 10.1051/cocv/2019031

View/Open
inverse_problem_paper.pdf (814.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
ESAIM. Control, Optimisation and Calculus of Variations
Volume
26
Number
59
Publisher
EDP Sciences
Publication identifier
10.1051/cocv/2019031
Metadata
Show full item record
Author(s)
Bakhta , Athmane
École des Ponts ParisTech [ENPC]
Ehrlacher, Virginie
École des Ponts ParisTech [ENPC]
Gontier, David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper concerns an inverse band structure problem for one dimensional periodic Schrödinger operators (Hill's operators). Our goal is to find a potential for the Hill's operator in order to reproduce as best as possible some given target bands, which may not be realisable. We recast the problem as an optimisation problem, and prove that this problem is well-posed when considering singular potentials (Borel measures). We then propose different algorithms to tackle the problem numerically.
Subjects / Keywords
Inverse Hill; optimisation; inverse band structure; periodic Schrödinger operator

Related items

Showing items related by title and author.

  • Thumbnail
    Numerical quadrature in the Brillouin zone for periodic Schrödinger operators 
    Cancès, Éric; Ehrlacher, Virginie; Gontier, David; Levitt, Antoine; Lombardi, Damiano (2020) Article accepté pour publication ou publié
  • Thumbnail
    A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation 
    Chavent, Guy; Kunisch, Karl (1993) Article accepté pour publication ou publié
  • Thumbnail
    Keller estimates of the eigenvalues in the gap of Dirac operators 
    Dolbeault, Jean; Gontier, David; Pizzichillo, Fabio; Van Den Bosch, Hanne (2022) Document de travail / Working paper
  • Thumbnail
    An Entropic Optimal Transport Numerical Approach to the Reflector Problem 
    Benamou, Jean-David; Ijzerman, Wilbert; Rukhaia, Giorgi (2020) Article accepté pour publication ou publié
  • Thumbnail
    Numerical construction of Wannier functions through homotopy 
    Gontier, David; Levitt, Antoine; Siraj-Dine, Sami (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo