Show simple item record

hal.structure.identifierÉcole des Ponts ParisTech [ENPC]
dc.contributor.authorBakhta , Athmane
hal.structure.identifierÉcole des Ponts ParisTech [ENPC]
dc.contributor.authorEhrlacher, Virginie
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorGontier, David
dc.date.accessioned2019-09-02T09:33:12Z
dc.date.available2019-09-02T09:33:12Z
dc.date.issued2020
dc.identifier.issn1292-8119
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/19620
dc.language.isoenen
dc.subjectInverse Hill
dc.subjectoptimisation
dc.subjectinverse band structure
dc.subjectperiodic Schrödinger operator
dc.subject.ddc515en
dc.titleNumerical reconstruction of the first band(s) in an inverse Hill's problem
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper concerns an inverse band structure problem for one dimensional periodic Schrödinger operators (Hill's operators). Our goal is to find a potential for the Hill's operator in order to reproduce as best as possible some given target bands, which may not be realisable. We recast the problem as an optimisation problem, and prove that this problem is well-posed when considering singular potentials (Borel measures). We then propose different algorithms to tackle the problem numerically.
dc.relation.isversionofjnlnameESAIM. Control, Optimisation and Calculus of Variations
dc.relation.isversionofjnlvol26
dc.relation.isversionofjnlissue59
dc.relation.isversionofjnldate2020
dc.relation.isversionofdoi10.1051/cocv/2019031
dc.relation.isversionofjnlpublisherEDP Sciences
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingouien
dc.relation.forthcomingprintouien
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2022-01-31T08:21:51Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record