• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling

Brouste, Alexandre; Dutang, Christophe; Rohmer, Tom (2019), Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling, Computational Statistics, 35, p. 689–724. 10.1007/s00180-019-00918-7

View/Open
GLM-2018-final.pdf (860.0Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Computational Statistics
Volume
35
Publisher
Springer
Pages
689–724
Publication identifier
10.1007/s00180-019-00918-7
Metadata
Show full item record
Author(s)
Brouste, Alexandre cc
Laboratoire Manceau de Mathématiques [LMM]
Dutang, Christophe cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Rohmer, Tom
Laboratoire Manceau de Mathématiques [LMM]
Abstract (EN)
Generalized linear models with categorical explanatory variables are considered and parameters of the model are estimated by an exact maximum likelihood method. The existence of a sequence of maximum likelihood estimators is discussed and considerations on possible link functions are proposed. A focus is then given on two particular positive distributions: the Pareto 1 distribution and the shifted log-normal distributions. Finally, the approach is illustrated on an actuarial dataset to model insurance losses.
Subjects / Keywords
Regression models; Heavy-tailed distributions; Explicit MLE; Insurance claim modeling

Related items

Showing items related by title and author.

  • Thumbnail
    A closed-form alternative estimator for GLM with categorical explanatory variables 
    Brouste, Alexandre; Dutang, Christophe; Rohmer, Tom (2022) Article accepté pour publication ou publié
  • Thumbnail
    Solvency tuned premium for a composite loss distribution 
    Brouste, Alexandre; Matoussi, Anis; Rohmer, Tom; Dutang, Christophe; Désert, Vanessa; Gales, Erwan; Golhen, Pierre; Milleville, Bérengère; Lekeufack, Willie (2018) Document de travail / Working paper
  • Thumbnail
    Asymptotic properties of the maximum likelihood estimator in dichotomous logit models 
    Gouriéroux, Christian; Monfort, Alain (1981) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotics of the discrete log-concave maximum likelihood estimator and related applications 
    Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013) Article accepté pour publication ou publié
  • Thumbnail
    An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests 
    Dutang, Christophe; Guibert, Quentin (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo