
A review on statistical inference methods for discrete Markov random fields
Stoehr, Julien (2017-04), A review on statistical inference methods for discrete Markov random fields. https://basepub.dauphine.fr/handle/123456789/19681
View/ Open
Type
Document de travail / Working paperExternal document link
https://arxiv.org/abs/1704.03331Date
2017-04Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
31
Metadata
Show full item recordAbstract (EN)
Developing satisfactory methodology for the analysis of Markov random field is a very challenging task. Indeed, due to the Markovian dependence structure, the normalizing constant of the fields cannot be computed using standard analytical or numerical methods. This forms a central issue for any statistical approach as the likelihood is an integral part of the procedure. Furthermore, such unobserved fields cannot be integrated out and the likelihood evaluation becomes a doubly intractable problem. This report gives an overview of some of the methods used in the literature to analyse such observed or unobserved random fields.Subjects / Keywords
statistics; Markov random fields; parameter estimation; model selectionRelated items
Showing items related by title and author.
-
Grelaud, Aude; Robert, Christian P.; Marin, Jean-Michel; Rodolphe, François; Taly, Jean-François (2009) Article accepté pour publication ou publié
-
Grelaud, Aude; Robert, Christian P.; Marin, Jean-Michel (2009) Article accepté pour publication ou publié
-
Grenier, Emmanuel; Hoffmann, Marc; Lelièvre, Tony; Louvet, Violaine; Prieur, Clémentine; Rachdi, Nabil; Vigneaux, Paul (2014) Communication / Conférence
-
Chong, Carsten; Hoffmann, Marc; Liu, Yanghui; Szymanski, Grégoire; Rosenbaum, Mathieu (2023) Document de travail / Working paper
-
Chong, Carsten; Hoffmann, Marc; Liu, Yanghui; Rosenbaum, Mathieu; Szymanski, Grégoire (2022) Document de travail / Working paper