• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

The DUNE-DPG library for solving PDEs with Discontinuous Petrov-Galerkin finite elements

Gruber, Felix; Klewinghaus, Angela; Mula, Olga (2017), The DUNE-DPG library for solving PDEs with Discontinuous Petrov-Galerkin finite elements, Archive of Numerical Software, 5, 1, p. 15. 10.11588/ans.2017.1.27719

View/Open
paper.pdf (498.8Kb)
Type
Article accepté pour publication ou publié
Date
2017
Journal name
Archive of Numerical Software
Volume
5
Number
1
Pages
15
Publication identifier
10.11588/ans.2017.1.27719
Metadata
Show full item record
Author(s)
Gruber, Felix
Rheinische-Westfälische Technische Hochschule [RWTH]
Klewinghaus, Angela
Rheinische-Westfälische Technische Hochschule [RWTH]
Mula, Olga cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In the numerical solution of partial differential equations (PDEs), a central question is the one of building variational formulations that are inf-sup stable not only at the infinite-dimensional level, but also at the finite-dimensional one. These properties are important since they represent the rigorous foundations for a posteriori error control and the development of adaptive strategies. The essential difficulty lies in finding systematic procedures to build variational formulations for which these desirable stability properties are (i) provable at the theoretical level while (ii) the approach remains implementable in practice and (iii) its computational complexity does not explode with the problem size. In this framework, the so-called Discontinuous Petrov–Galerkin (DPG) concept seems a promising approach to enlarge the scope of problems beyond second order elliptic PDEs for which this is possible. In the context of DPG, the result for the elliptic case was proven by Gopalakrishnan and Qiu [2014] and requires a p-enriched test space. Recently, the same type of result has been proven by Broersen et al. [2015] for certain classes of linear transport problems using an appropriate hp-enrichment to build the finite dimensional test space. In the light of this new result, we present Dune-DPG, a C++ library which allows to implement the test spaces introduced in Broersen et al. [2015]. The library is built upon the multi-purpose finite element package Dune (see Blatt et al. [2016]). In this paper, we present the current version 0.2 of Dune-DPG which has so far been tested only for elliptic and transport problems. An example of use via a simple transport equation is described. We conclude outlining future work and applications to more complex problems. Dune-DPG is licensed under the GPL 2 with runtime exception and a source code tarball is available together with this paper.
Subjects / Keywords
discontinuous Petrov-Galerkin; partial differential equations; inf-sup stability; transport equation; finite elements; DUNE

Related items

Showing items related by title and author.

  • Thumbnail
    An Adaptive Nested Source Term Iteration for Radiative Transfer Equations 
    Dahmen, Wolfgang; Gruber, Felix; Mula, Olga (2020) Article accepté pour publication ou publié
  • Thumbnail
    State estimation with nonlinear reduced models. Application to the reconstruction of blood flows with Doppler ultrasound images 
    Galarce, Felipe; Gerbeau, Jean-Frédéric; Lombardi, Damiano; Mula, Olga (2019) Document de travail / Working paper
  • Thumbnail
    Epidemiological Forecasting with Model Reduction of Compartmental Models. Application to the COVID-19 Pandemic 
    Bakhta, Athmane; Boiveau, Thomas; Maday, Yvon; Mula, Olga (2021) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization in the energy variable for a neutron transport model 
    Hutridurga, Harsha; Mula, Olga; Salvarani, Francesco (2020) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces 
    Ehrlacher, Virginie; Lombardi, Damiano; Mula, Olga; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo