• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem

Duval, Vincent; Benamou, Jean-David (2018), Minimal convex extensions and finite difference discretisation of the quadratic Monge–Kantorovich problem, European Journal of Applied Mathematics, p. 1-38. 10.1017/S0956792518000451

View/Open
MABV2final.pdf (3.260Mb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
European Journal of Applied Mathematics
Publisher
Cambridge University Press
Pages
1-38
Publication identifier
10.1017/S0956792518000451
Metadata
Show full item record
Author(s)
Duval, Vincent cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Benamou, Jean-David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We present an adaptation of the Monge–Ampère (MA) lattice basis reduction scheme to the MA equation with second boundary value condition, provided the target is a convex set. This yields a fast adaptive method to numerically solve the optimal transport (OT) problem between two absolutely continuous measures, the second of which has convex support. The proposed numerical method actually captures a specific Brenier solution which is minimal in some sense. We prove the convergence of the method as the grid step size vanishes and show with numerical experiments that it is able to reproduce subtle properties of the OT problem.
Subjects / Keywords
Optimal transport; Monge-Ampère equation; finite-difference scheme

Related items

Showing items related by title and author.

  • Thumbnail
    A system of inequalities arising in mathematical economics and connected with the Monge-Kantorovich problem 
    Carlier, Guillaume; Levin, V.L.; Ekeland, Ivar; Shananin, A.A. (2002) Document de travail / Working paper
  • Thumbnail
    Monotone and Consistent discretization of the Monge-Ampere operator 
    Benamou, Jean-David; Collino, Francis; Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
  • Thumbnail
    Point Source Regularization of the Finite Source Reflector Problem 
    Benamou, Jean-David; Chazareix, Guillaume; Ijzerman, Wilbert; Rukhaia, Giorgi (2022) Article accepté pour publication ou publié
  • Thumbnail
    A viscosity framework for computing Pogorelov solutions of the Monge-Ampere equation 
    Benamou, Jean-David; Froese, Brittany D. (2014) Document de travail / Working paper
  • Thumbnail
    Discretization of functionals involving the Monge-Ampère operator 
    Benamou, Jean-David; Carlier, Guillaume; Mérigot, Quentin; Oudet, Edouard (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo