The genealogy of self-similar fragmentations with negative index as a continuum random tree
Haas, Bénédicte; Miermont, Grégory (2004), The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electronic Journal of Probability, 9, paper 4, p. 57-97
Type
Article accepté pour publication ou publiéDate
2004Journal name
Electronic Journal of ProbabilityVolume
9Number
paper 4Publisher
Institute of Mathematical Statistics
Pages
57-97
Metadata
Show full item recordAbstract (EN)
We encode a certain class of stochastic fragmentation processes, namely self-similar fragmentation processes with a negative index of self-similarity, into a metric family tree which belongs to the family of Continuum Random Trees of Aldous. When the splitting times of the fragmentation are dense near 0, the tree can in turn be encoded into a continuous height function, just as the Brownian Continuum Random Tree is encoded in a normalized Brownian excursion. Under mild hypotheses, we then compute the Hausdor® dimensions of these trees, and the maximal HÄ older exponents of the height functions.Subjects / Keywords
ProbabilitésRelated items
Showing items related by title and author.
-
Miermont, Grégory; Haas, Bénédicte (2011) Article accepté pour publication ou publié
-
Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008-09) Article accepté pour publication ou publié
-
Haas, Bénédicte (2010) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
-
Goldschmidt, Christina; Haas, Bénédicte (2010) Article accepté pour publication ou publié