Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorOrieux, Michaël
hal.structure.identifierLaboratoire Jean Alexandre Dieudonné [JAD]
dc.contributor.authorCaillau, Jean-Baptiste
HAL ID: 2469
hal.structure.identifierInstitut de Mathématiques de Bourgogne [Dijon] [IMB]
dc.contributor.authorCombot, Thierry
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
hal.structure.identifierInstitut de Mécanique Céleste et de Calcul des Ephémérides [IMCCE]
dc.contributor.authorFéjoz, Jacques
dc.date.accessioned2019-09-24T14:12:24Z
dc.date.available2019-09-24T14:12:24Z
dc.date.issued2018
dc.identifier.issn0393-0440
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/19911
dc.language.isoenen
dc.subjectHamiltonian systemsen
dc.subjectIntegrabilityen
dc.subjectDifferential Galois theoryen
dc.subjectOptimal controlen
dc.subjectKepler problemen
dc.subject.ddc515en
dc.titleNon-integrability of the minimum-time Kepler problemen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove, using Moralès–Ramis theorem, that the minimum-time controlled Kepler problem is not meromorphically integrable in the Liouville sens on the Riemann surface of its Hamiltonian.en
dc.relation.isversionofjnlnameJournal of Geometry and Physics
dc.relation.isversionofjnlvol132en
dc.relation.isversionofjnlissueOctobre 2018en
dc.relation.isversionofjnldate2018-10
dc.relation.isversionofjnlpages452-459en
dc.relation.isversionofdoi10.1016/j.geomphys.2018.06.012en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-09-24T12:47:24Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record