Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorLaraki, Rida
HAL ID: 179670
ORCID: 0000-0002-4898-2424
dc.date.accessioned2019-09-25T09:48:16Z
dc.date.available2019-09-25T09:48:16Z
dc.date.issued2017
dc.identifier.issn1930-6792
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/19913
dc.language.isoenen
dc.subjectGambling theoryen
dc.subjectMarkov decision theory convergence of value functionsen
dc.subject.ddc519en
dc.titleA Continuity Question of Dubins and Savageen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenLester Dubins and Leonard Savage posed the question as to what extent the optimal reward function U of a leavable gambling problem varies continuously in the gambling house Γ, which specifies the stochastic processes available to a player, and the utility function u, which determines the payoff for each process. Here a distance is defined for measurable houses with a Borel state space and a bounded Borel measurable utility. A trivial example shows that the mapping Γ ↦ U is not always continuous for fixed u. However, it is lower semicontinuous in the sense that, if Γ n converges to Γ, then lim inf U n ≥ U. The mapping u ↦ U is continuous in the supnorm topology for fixed Γ, but is not always continuous in the topology of uniform convergence on compact sets. Dubins and Savage observed that a failure of continuity occurs when a sequence of superfair casinos converges to a fair casino, and queried whether this is the only source of discontinuity for the special gambling problems called casinos. For the distance used here, an example shows that there can be discontinuity even when all the casinos are subfair.en
dc.relation.isversionofjnlnameJournal of applied probability and statistics
dc.relation.isversionofjnlvol54en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2017-06
dc.relation.isversionofjnlpages462-473en
dc.relation.isversionofdoi10.1017/jpr.2017.11en
dc.relation.isversionofjnlpublisherISOSS Publicationsen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2019-09-25T09:45:46Z
hal.identifierhal-02296518*
hal.version1*
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record