• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography

Lounici, Karim; Meziani, Katia; Peyré, Gabriel (2018), Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography, The Annals of Statistics, 46, 3, p. 1318-1351.. 10.1214/17-AOS1586

View/Open
KKP_AOS_REVISED_3.pdf (781.6Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
The Annals of Statistics
Volume
46
Number
3
Pages
1318-1351.
Publication identifier
10.1214/17-AOS1586
Metadata
Show full item record
Author(s)
Lounici, Karim
School of Mathematics - Georgia Institute of Technology
Meziani, Katia
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Département de Mathématiques et Applications - ENS Paris [DMA]
Abstract (EN)
In quantum optics, the quantum state of a light beam is represented through the Wigner function, a density on R 2 which may take negative values but must respect intrinsic positivity constraints imposed by quantum physics. In the framework of noisy quantum homodyne tomography with efficiency parameter 1/2 < η ≤ 1, we study the theoretical performance of a kernel estimator of the Wigner function. We prove that it is minimax efficient, up to a logarithmic factor in the sample size, for the L∞-risk over a class of infinitely differentiable functions. We also compute the lower bound for the L 2-risk. We construct an adaptive estimator, i.e. which does not depend on the smoothness parameters, and prove that it attains the minimax rates for the corresponding smoothness of the class of functions up to a logarithmic factor in the sample size. Finite sample behaviour of our adaptive procedure is explored through numerical experiments.
Subjects / Keywords
L 2 and L∞ Risks; In-; Inverse problem; Non-parametric minimax estimation; Adaptive estimation; Quantum homodyne tomography; Wigner function; Radon; Radon transform; Quantum state

Related items

Showing items related by title and author.

  • Thumbnail
    Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data 
    Peyré, Gabriel; Meziani, Katia; Alquier, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    Rank penalized estimation of a quantum system 
    Meziani, Katia; Hebiri, Mohamed; Butucea, Cristina; Alquier, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    Bayesian nonparametric estimation for Quantum Homodyne Tomography 
    Naulet, Zacharie; Barat, Éric (2017) Article accepté pour publication ou publié
  • Thumbnail
    Quadratic functional estimation in inverse problems 
    Meziani, Katia; Butucea, Cristina (2011) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of cosmological parameters using adaptive importance sampling 
    Wraith, Darren; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Prunet, Simon; Kilbinger, Martin; Benabed, Karim; Robert, Christian P. (2009-03) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo