• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Streaming saturation for large RDF graphs with dynamic schema information

Farvardin, Mohammad Amin; Colazzo, Dario; Belhajjame, Khalid; Sartiani, Carlo (2019), Streaming saturation for large RDF graphs with dynamic schema information, in Alvin Cheung, Kim Nguyễn, Proceedings of the 17th ACM SIGPLAN International Symposium on Database Programming Languages (DBPL 2019 ), ACM - Association for Computing Machinery : New York, NY, p. 42-52. 10.1145/3315507.3330201

View/Open
technical-paper.pdf (1.499Mb)
Type
Communication / Conférence
Date
2019
Conference title
Proceedings of the 17th ACM SIGPLAN International Symposium on Database Programming Languages (DBPL 2019 )
Conference date
2019
Conference city
New York, NY
Book title
Proceedings of the 17th ACM SIGPLAN International Symposium on Database Programming Languages (DBPL 2019 )
Book author
Alvin Cheung, Kim Nguyễn
Publisher
ACM - Association for Computing Machinery
Published in
New York, NY
ISBN
978-1-4503-6718-9
Pages
42-52
Publication identifier
10.1145/3315507.3330201
Metadata
Show full item record
Author(s)
Farvardin, Mohammad Amin
Colazzo, Dario
Belhajjame, Khalid
Sartiani, Carlo
Abstract (EN)
In the Big Data era, RDF data are produced in high volumes. While there exist proposals for reasoning over large RDF graphs using big data platforms, there is a dearth of solutions that do so in environments where RDF data are dynamic, and where new instance and schema triples can arrive at any time. In this work, we present the first solution for reasoning over large streams of RDF data using big data platforms. In doing so, we focus on the saturation operation, which seeks to infer implicit RDF triples given RDF schema constraints. Indeed, unlike existing solutions which saturate RDF data in bulk, our solution carefully identifies the fragment of the existing (and already saturated) RDF dataset that needs to be considered given the fresh RDF statements delivered by the stream. Thereby, it performs the saturation in an incremental manner. Experimental analysis shows that our solution outperforms existing bulk-based saturation solutions.
Subjects / Keywords
RDF saturation; RDF streams; Big Data; Spark

Related items

Showing items related by title and author.

  • Thumbnail
    Scalable Saturation of Streaming RDF Triples 
    Farvardin, Mohammad Amin; Colazzo, Dario; Belhajjame, Khalid; Sartiani, Carlo (2020) Chapitre d'ouvrage
  • Thumbnail
    Scalable Saturation of Streaming RDF Triples 
    Farvardin, Mohammad Amin (2021-01-19) Thèse
  • Thumbnail
    Schemas And Types For JSON Data 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
  • Thumbnail
    Schemas and Types for JSON Data: From Theory to Practice 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
  • Thumbnail
    A Type System for Interactive JSON Schema Inference (Extended Abstract) 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo