• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Chore division on a graph

Bouveret, Sylvain; Cechlarova, Katarína; Lesca, Julien (2019), Chore division on a graph, Autonomous Agents and Multi-Agent Systems, 33, 5, p. 540-563. 10.1007/s10458-019-09415-z

View/Open
chore_division.pdf (176.3Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Autonomous Agents and Multi-Agent Systems
Volume
33
Number
5
Publisher
Springer
Pages
540-563
Publication identifier
10.1007/s10458-019-09415-z
Metadata
Show full item record
Author(s)
Bouveret, Sylvain cc
Laboratoire d'Informatique de Grenoble [LIG]
Cechlarova, Katarína

Lesca, Julien
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
The paper considers fair allocation of indivisible nondisposable items that generate disutility (chores). We assume that these items are placed in the vertices of a graph and each agent’s share has to form a connected subgraph of this graph. Although a similar model has been investigated before for goods, we show that the goods and chores settings are inherently different. In particular, it is impossible to derive the solution of the chores instance from the solution of its naturally associated fair division instance. We consider three common fair division solution concepts, namely proportionality, envy-freeness and equitability, and two individual disutility aggregation functions: additive and maximum based. We show that deciding the existence of a fair allocation is hard even if the underlying graph is a path or a star. We also present some efficiently solvable special cases for these graph topologies.
Subjects / Keywords
Computational social choice; Resource allocation; Fair division; Indivisible chores

Related items

Showing items related by title and author.

  • Thumbnail
    Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity 
    Bouveret, Sylvain; Lang, Jérôme (2005) Communication / Conférence
  • Thumbnail
    Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity 
    Bouveret, Sylvain; Lang, Jérôme (2008) Article accepté pour publication ou publié
  • Thumbnail
    Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods 
    Bouveret, Sylvain; Endriss, Ulle; Lang, Jérôme (2010) Communication / Conférence
  • Thumbnail
    Scoring Rules for the Allocation of Indivisible Goods 
    Baumeister, Dorothea; Bouveret, Sylvain; Lang, Jérôme; Nguyen, Nhan-Tam; Nguyen, Trung Thanh; Rothe, Jörg (2014) Communication / Conférence
  • Thumbnail
    Knowledge, Fairness, and Social Constraints 
    Aziz, Haris; Bouveret, Sylvain; Caragiannis, Ioannis; Giagkousi, Ira; Lang, Jérôme (2018) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo