• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Agreeable sets with matroidal constraints

Gourvès, Laurent (2019), Agreeable sets with matroidal constraints, Journal of Combinatorial Optimization, 37, 3, p. 866-888. 10.1007/s10878-018-0327-1

Type
Article accepté pour publication ou publié
Date
2019
Journal name
Journal of Combinatorial Optimization
Volume
37
Number
3
Publisher
Springer
Pages
866-888
Publication identifier
10.1007/s10878-018-0327-1
Metadata
Show full item record
Author(s)
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This article deals with the challenge of reaching an agreement for a group of agents who have heterogeneous preferences over a set of goods. In a recent work, Suksompong (in: Subbarao (ed) Proceedings of the twenty-fifth international joint conference on artificial intelligence, IJCAI 2016, New York, pp 489–495, 2016) models a problem of this kind as the search of an agreeable subset of a given ground set of goods. A subset is agreeable if it is weakly preferred to its complement by every agent of the group. Under natural assumptions on the agents’ preferences such as monotonicity or responsiveness, an agreeable set of small cardinality is guaranteed to exist, and it can be efficiently computed. This article deals with an extension to subsets which must satisfy extra matroidal constraints. Worst case upper bounds on the size of an agreeable set are shown, and algorithms for computing them are given. For the case of two agents having additive preferences, we show that an agreeable solution can also be approximately optimal (up to a multiplicative constant factor) for both agents.
Subjects / Keywords
Allocation of indivisible goods; Matroids; Approximation

Related items

Showing items related by title and author.

  • Thumbnail
    Subset sum problems with digraph constraints 
    Gourvès, Laurent; Monnot, Jérôme; Tlilane, Lydia (2018) Article accepté pour publication ou publié
  • Thumbnail
    On the hitting set of bundles problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Document de travail / Working paper
  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2008) Communication / Conférence
  • Thumbnail
    On the impact of local taxes in a set cover game 
    Monnot, Jérôme; Gourvès, Laurent; Escoffier, Bruno (2010) Communication / Conférence
  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Gourvès, Laurent; Bampis, Evripidis; Angel, Eric (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo