
The continuous Anderson hamiltonian in d≤3
Labbé, Cyril (2019), The continuous Anderson hamiltonian in d≤3, Journal of Functional Analysis, 277, 9, p. 3187-3235. 10.1016/j.jfa.2019.05.027
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Journal of Functional AnalysisVolume
277Number
9Publisher
Elsevier
Pages
3187-3235
Publication identifier
Metadata
Show full item recordAbstract (EN)
We construct the continuous Anderson hamiltonian on (−L,L)d driven by a white noise and endowed with either Dirichlet or periodic boundary conditions. Our construction holds in any dimension d≤3 and relies on the theory of regularity structures: it yields a self-adjoint operator in L2((−L,L)d) with pure point spectrum. In d≥2, a renormalisation of the operator by means of infinite constants is required to compensate for ill-defined products involving functionals of the white noise. We also obtain left tail estimates on the distributions of the eigenvalues: in particular, for d=3 these estimates show that the eigenvalues do not have exponential moments.Subjects / Keywords
Anderson hamiltonian; Regularity structures; White noise; Schrödinger operatorRelated items
Showing items related by title and author.
-
Hsu, Yueh-Sheng; Labbé, Cyril (2022) Article accepté pour publication ou publié
-
Dumaz, Laure; Labbé, Cyril (2019) Article accepté pour publication ou publié
-
Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
-
Dumaz, Laure; Labbé, Cyril (2021) Document de travail / Working paper
-
Labbé, Cyril (2014) Article accepté pour publication ou publié