• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the Torus

Evans, Josephine (2021), Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the Torus, SIAM Journal on Mathematical Analysis, 53, 2, p. 18. 10.1137/19M1277631

View/Open
hypocoericvityphientropy.pdf (324.2Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
SIAM Journal on Mathematical Analysis
Volume
53
Number
2
Publisher
SIAM - Society for Industrial and Applied Mathematics
Published in
Paris
Pages
18
Publication identifier
10.1137/19M1277631
Metadata
Show full item record
Author(s)
Evans, Josephine
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper studies convergence to equilibrium for the spatially inhomogeneous linear relaxation Boltzmann equation in Boltzmann entropy and related entropy functionals, the p-entropies. Villani proved in [28] entropic hypocoercivity for a class of PDEs in a Hörmander sum of squares form. It was an open question to prove such a result for an operator which does not share this form. We prove a closed entropy-entropy production inequalityà la Villani which implies exponentially fast convergence to equilibrium for the linear Boltzmann equation with a quantitative rate. The key new idea appearing in our proof is the use of a total derivative of the entropy of a projection of our solution to compensate for an error term which appears when using non-linear entropies. We also extend the proofs for hypocoercivity for the linear relaxation Boltzmann to the case of Φ-entropy functionals.
Subjects / Keywords
Convergence to equilibrium; Hypocoercivity; Linear Boltzmann Equation; φ-entropy; Logarithmic Sobolev inequality; Beckner Inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Quantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torus 
    Evans, Josephine; Moyano, Iván (2019-09) Document de travail / Working paper
  • Thumbnail
    Hypocoercivity of linear kinetic equations via Harris's Theorem 
    Cañizo, José; Cao, Chuqi; Evans, Josephine; Yoldaş, Havva (2020) Article accepté pour publication ou publié
  • Thumbnail
    Hypocoercivity for kinetic equations with linear relaxation terms 
    Schmeiser, Christian; Mouhot, Clément; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    Entropy Methods for the Boltzmann Equation 
    Rezakhanlou, Fraydoun; Villani, Cédric; Golse, François; Olla, Stefano (2008) Ouvrage
  • Thumbnail
    Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition 
    Bernou, Armand; Carrapatoso Nascimento Junior, Kleber; Mischler, Stéphane; Tristani, Isabelle (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo