• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Quantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torus

Evans, Josephine; Moyano, Iván (2019-09), Quantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torus. https://basepub.dauphine.fr/handle/123456789/20114

View/Open
quantitativedegeneratehypocoercivity.pdf (369.0Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02285239
Date
2019-09
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
22
Metadata
Show full item record
Author(s)
Evans, Josephine
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Moyano, Iván cc
Statistical Laboratory [Cambridge]
Abstract (EN)
We study the linear relaxation Boltzmann equation on the torus with a spatially varying jump rate which can be zero on large sections of the domain. In [5] Bernard and Salvarani showed that this equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric control condition of Bardos, Lebeau and Rauch [3]. In [22] Han-Kwan and Léautaud showed a more general result for linear Boltzmann equations under the action of potentials in different geometric contexts, including the case of unbounded velocities. In this paper we obtain quantitative rates of convergence to equilibrium when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin's theorem from Markov chains.
Subjects / Keywords
Convergence to equilibrium; Hypocoercivity; Linear Boltzmann Equation; Degenerate Hypocoercivity, Geometric Control Condition

Related items

Showing items related by title and author.

  • Thumbnail
    Hypocoercivity in Phi-entropy for the linear relaxation Boltzmann equation on the Torus 
    Evans, Josephine (2021) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials 
    Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus 
    Mouhot, Clément; Neumann, Lukas (2006) Article accepté pour publication ou publié
  • Thumbnail
    Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off 
    Tristani, Isabelle (2014) Article accepté pour publication ou publié
  • Thumbnail
    Hypocoercivity of linear kinetic equations via Harris's Theorem 
    Cañizo, José; Cao, Chuqi; Evans, Josephine; Yoldaş, Havva (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo