
Quantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torus
Evans, Josephine; Moyano, Iván (2019-09), Quantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torus. https://basepub.dauphine.fr/handle/123456789/20114
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02285239Date
2019-09Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
22
Metadata
Show full item recordAuthor(s)
Evans, JosephineCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Moyano, Iván

Statistical Laboratory [Cambridge]
Abstract (EN)
We study the linear relaxation Boltzmann equation on the torus with a spatially varying jump rate which can be zero on large sections of the domain. In [5] Bernard and Salvarani showed that this equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric control condition of Bardos, Lebeau and Rauch [3]. In [22] Han-Kwan and Léautaud showed a more general result for linear Boltzmann equations under the action of potentials in different geometric contexts, including the case of unbounded velocities. In this paper we obtain quantitative rates of convergence to equilibrium when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin's theorem from Markov chains.Subjects / Keywords
Convergence to equilibrium; Hypocoercivity; Linear Boltzmann Equation; Degenerate Hypocoercivity, Geometric Control ConditionRelated items
Showing items related by title and author.
-
Evans, Josephine (2021) Article accepté pour publication ou publié
-
Mouhot, Clément (2006) Article accepté pour publication ou publié
-
Mouhot, Clément; Neumann, Lukas (2006) Article accepté pour publication ou publié
-
Tristani, Isabelle (2014) Article accepté pour publication ou publié
-
Cañizo, José; Cao, Chuqi; Evans, Josephine; Yoldaş, Havva (2020) Article accepté pour publication ou publié