Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorEvans, Josephine
hal.structure.identifierStatistical Laboratory [Cambridge]
dc.contributor.authorMoyano, Iván
HAL ID: 4737
ORCID: 0000-0002-2646-5688
dc.date.accessioned2019-10-12T13:06:54Z
dc.date.available2019-10-12T13:06:54Z
dc.date.issued2019-09
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20114
dc.language.isoenen
dc.subjectConvergence to equilibriumen
dc.subjectHypocoercivityen
dc.subjectLinear Boltzmann Equationen
dc.subjectDegenerate Hypocoercivity, Geometric Control Conditionen
dc.subject.ddc515en
dc.titleQuantitative rates of convergence to equilibrium for the degenreate linear Boltzman equation on the Torusen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe study the linear relaxation Boltzmann equation on the torus with a spatially varying jump rate which can be zero on large sections of the domain. In [5] Bernard and Salvarani showed that this equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric control condition of Bardos, Lebeau and Rauch [3]. In [22] Han-Kwan and Léautaud showed a more general result for linear Boltzmann equations under the action of potentials in different geometric contexts, including the case of unbounded velocities. In this paper we obtain quantitative rates of convergence to equilibrium when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin's theorem from Markov chains.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages22en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02285239en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2019-10-12T13:05:33Z
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record