Shape part Transfer via semantic latent space factorization
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Groscot, Raphaël | * |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Cohen, Laurent D.
HAL ID: 738939 | * |
hal.structure.identifier | ||
dc.contributor.author | Guibas, Leonidas | * |
dc.date.accessioned | 2019-10-12T14:24:56Z | |
dc.date.available | 2019-10-12T14:24:56Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20118 | |
dc.language.iso | en | en |
dc.subject | Autoencoder | |
dc.subject | Pointcloud | |
dc.subject | Latent space | |
dc.subject.ddc | 621.3 | en |
dc.title | Shape part Transfer via semantic latent space factorization | |
dc.type | Communication / Conférence | |
dc.description.abstracten | We present a latent space factorization that controls a generative neural network for shapes in a semantic way. Our method uses the segmentation data present in a collection of shapes to explicitly factorize the encoder of a pointcloud autoencoder network, replacing it by several sub-encoders. This allows to learn a semantically-structured latent space in which we can uncover statistical modes corresponding to semantically similar shapes, as well as mixing parts from several objects to create hybrids and quickly explore design ideas through varying shape combinations. Our work differs from existing methods in two ways: first, it proves the usefulness of neural networks to achieve shape combinations and second, adapts the whole geometry of the object to accommodate for its different parts. | |
dc.identifier.citationpages | 511-519 | |
dc.relation.ispartoftitle | Geometric Science of Information 4th International Conference, GSI 2019, Toulouse, France, August 27–29, 2019, Proceedings | |
dc.relation.ispartoftitle | Proc. 4th conference on Geometric Science of Information (GSI2019) | |
dc.relation.ispartofpublname | Springer | |
dc.relation.ispartofpublcity | Berlin Heidelberg | |
dc.relation.ispartofdate | 2019 | |
dc.relation.ispartofurl | 10.1007/978-3-030-26980-7 | |
dc.subject.ddclabel | Traitement du signal | en |
dc.relation.ispartofisbn | Print ISBN 978-3-030-26979-1 | |
dc.relation.confcountry | FRANCE | |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1007/978-3-030-26980-7_53 | |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.date.updated | 2019-10-12T14:25:31Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |