
Two-dimensional Dirac operators with singular interactions supported on closed curves
Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020), Two-dimensional Dirac operators with singular interactions supported on closed curves, Journal of Functional Analysis, 279, 8, p. 52. 10.1016/j.jfa.2020.108700
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Journal of Functional AnalysisVolume
279Number
8Publisher
Elsevier
Published in
Paris
Pages
52
Publication identifier
Metadata
Show full item recordAuthor(s)
Behrndt, JussiHolzmann, Markus
Ourmières-Bonafos, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pankrashkin, Konstantin
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
This paper is devoted to the study of the two-dimensional Dirac operator with an arbitrary combination of an electrostatic and a Lorentz scalar δ-interaction of constant strengths supported on a closed curve. For any combination of the coupling constants a rigorous description of the self-adjoint realization of the operators is given and the spectral properties are described. For a non-zero mass and a critical combination of coupling constants the operator appears to have an additional point in the essential spectrum, which is related to a loss of regularity in the operator domain, and the position of this point is expressed in terms of the coupling constants.Subjects / Keywords
Two-dimensional Dirac operators; closed curves; Dirac operator with singular interaction; Self-adjoint extension; Boundary triple; Periodic pseudodifferential operatorsRelated items
Showing items related by title and author.
-
Moroianu, Andrei; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
-
Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2018) Document de travail / Working paper
-
Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
-
Lotoreichik, Vladimir; Ourmières-Bonafos, Thomas (2018) Document de travail / Working paper
-
Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié