• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Two-dimensional Dirac operators with singular interactions supported on closed curves

Behrndt, Jussi; Holzmann, Markus; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020), Two-dimensional Dirac operators with singular interactions supported on closed curves, Journal of Functional Analysis, 279, 8, p. 52. 10.1016/j.jfa.2020.108700

View/Open
2dd27.pdf (604.4Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Journal of Functional Analysis
Volume
279
Number
8
Publisher
Elsevier
Published in
Paris
Pages
52
Publication identifier
10.1016/j.jfa.2020.108700
Metadata
Show full item record
Author(s)
Behrndt, Jussi
Holzmann, Markus
Ourmières-Bonafos, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Pankrashkin, Konstantin
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
This paper is devoted to the study of the two-dimensional Dirac operator with an arbitrary combination of an electrostatic and a Lorentz scalar δ-interaction of constant strengths supported on a closed curve. For any combination of the coupling constants a rigorous description of the self-adjoint realization of the operators is given and the spectral properties are described. For a non-zero mass and a critical combination of coupling constants the operator appears to have an additional point in the essential spectrum, which is related to a loss of regularity in the operator domain, and the position of this point is expressed in terms of the coupling constants.
Subjects / Keywords
Two-dimensional Dirac operators; closed curves; Dirac operator with singular interaction; Self-adjoint extension; Boundary triple; Periodic pseudodifferential operators

Related items

Showing items related by title and author.

  • Thumbnail
    Dirac operators on hypersurfaces as large mass limits 
    Moroianu, Andrei; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2020) Article accepté pour publication ou publié
  • Thumbnail
    Effective operator for Robin eigenvalues in domains with corners 
    Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin (2018) Document de travail / Working paper
  • Thumbnail
    Dirac operators and shell interactions: a survey 
    Ourmières-Bonafos, Thomas; Pizzichillo, Fabio (2020) Chapitre d'ouvrage
  • Thumbnail
    A sharp upper bound on the spectral gap for convex graphene quantum dots 
    Lotoreichik, Vladimir; Ourmières-Bonafos, Thomas (2018) Document de travail / Working paper
  • Thumbnail
    On the uniqueness of the solution of the two-dimensional Navier–Stokes equation with a Dirac mass as initial vorticity 
    Gallagher, Isabelle; Gallay, Thierry; Lions, Pierre-Louis (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo