• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Approximate Bayesian computation with the Wasserstein distance

Bernton, Espen; Jacob, Pierre E.; Gerber, Mathieu; Robert, Christian P. (2019), Approximate Bayesian computation with the Wasserstein distance, Journal of the Royal Statistical Society. Series B, Statistical Methodology, 81, 2, p. 235-269. 10.1111/rssb.12312

Type
Article accepté pour publication ou publié
Date
2019
Journal name
Journal of the Royal Statistical Society. Series B, Statistical Methodology
Volume
81
Number
2
Publisher
Wiley
Pages
235-269
Publication identifier
10.1111/rssb.12312
Metadata
Show full item record
Author(s)
Bernton, Espen

Jacob, Pierre E. cc

Gerber, Mathieu

Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these data sets with the corresponding observed values. We propose to avoid the use of summaries and the ensuing loss of information by instead using the Wasserstein distance between the empirical distributions of the observed and synthetic data. This generalizes the well‐known approach of using order statistics within approximate Bayesian computation to arbitrary dimensions. We describe how recently developed approximations of the Wasserstein distance allow the method to scale to realistic data sizes, and we propose a new distance based on the Hilbert space filling curve. We provide a theoretical study of the method proposed, describing consistency as the threshold goes to 0 while the observations are kept fixed, and concentration properties as the number of observations grows. Various extensions to time series data are discussed. The approach is illustrated on various examples, including univariate and multivariate g‐and‐k distributions, a toggle switch model from systems biology, a queuing model and a Lévy‐driven stochastic volatility model.
Subjects / Keywords
Approximate Bayesian computation; Generative models; Likelihood‐free inference; Optimal transport; Wasserstein distance

Related items

Showing items related by title and author.

  • Thumbnail
    Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" 
    Singh, Sumeetpal S.; Sedki, Mohammed; Jasra, Ajay; Pudlo, Pierre; Robert, Christian P.; Lee, Anthony; Marin, Jean-Michel; Kosmidis, Ioannis; Girolami, Mark; Andrieu, Christophe; Cornebise, Julien; Doucet, Arnaud; Barthelme, Simon; Chopin, Nicolas (2012) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Inference in generative models using the Wasserstein distance 
    Bernton, Espen; Jacob, Pierre E.; Gerber, Mathieu; Robert, Christian P. (2017) Document de travail / Working paper
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models 
    Martin, Gaël; McCabe, Brendan P.M.; Frazier, David T.; Maneesoonthorn, Worapree; Robert, Christian P. (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo