• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A variational finite volume scheme for Wasserstein gradient flows

Cancès, Clément; Gallouët, Thomas; Todeschi, Gabriele (2020), A variational finite volume scheme for Wasserstein gradient flows, Numerische Mathematik, p. 34. 10.1007/s00211-020-01153-9

View/Open
CGT_LJKO.pdf (912.2Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Numerische Mathematik
Publisher
Springer
Published in
Paris
Pages
34
Publication identifier
10.1007/s00211-020-01153-9
Metadata
Show full item record
Author(s)
Cancès, Clément cc
Laboratoire Paul Painlevé [LPP]
Gallouët, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Todeschi, Gabriele
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. Our scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. Our scheme can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that our scheme admits a unique solution whatever the convex energy involved in the continuous problem , and we prove its convergence in the case of the linear Fokker-Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.
Subjects / Keywords
Wasserstein gradient flows; Benamou-Brenier formula

Related items

Showing items related by title and author.

  • Thumbnail
    From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows 
    Gallouët, Thomas; Natale, Andrea; Todeschi, Gabriele (2022) Document de travail / Working paper
  • Thumbnail
    Finite volume approximation of optimal transport and Wasserstein gradient flows 
    Todeschi, Gabriele (2021-12-13) Thèse
  • Thumbnail
    TPFA Finite Volume Approximation of Wasserstein Gradient Flows 
    Natale, Andrea; Todeschi, Gabriele (2020) Communication / Conférence
  • Thumbnail
    Simulation of multiphase porous media flows with minimizing movement and finite volume schemes 
    Cancès, Clément; Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard (2019) Article accepté pour publication ou publié
  • Thumbnail
    Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces 
    Legendre, Guillaume; Turinici, Gabriel (2017) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo