
On the existence of L2-valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions
Marchesani, Stefano; Olla, Stefano (2020), On the existence of L2-valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions, Communications in Partial Differential Equations. 10.1080/03605302.2020.1750426
Voir/Ouvrir
Type
Article accepté pour publication ou publiéDate
2020Nom de la revue
Communications in Partial Differential EquationsÉditeur
Taylor & Francis
Ville d’édition
Paris
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We prove existence of L2-weak solutions of a quasilinear wave equation with boundary conditions. This describes the isothermal evolution of a one dimensional non-linear elastic material, attached to a fixed point on one side and subject to a force (tension) applied to the other side. The L2-valued solutions appear naturally when studying the hydrodynamic limit from a microscopic dynamics of a chain of anharmonic springs connected to a thermal bath. The proof of the existence is done using a vanishing viscosity approximation with extra Neumann boundary conditions added. In this setting we obtain a uniform a priori estimate in L2, allowing us to use L2 Young measures, together with the classical tools of compensated compactness. We then prove that the viscous solutions converge to weak solutions of the quasilinear wave equation strongly in Lp , for any p ∈ [1, 2), that satisfy, in a weak sense, the boundary conditions. Furthermore, these solutions satisfy the Clausius inequality: the change of the free energy is bounded by the work done by the boundary tension. In this sense they are the correct thermodynamic solutions, and we conjecture their uniqueness.Mots-clés
hyperbolic conservation laws; boundary conditions; weak solutions; vanishing viscos-ity; quasi-linear wave equation; vanishing viscosity; compensated compactness; entropy solutions; Clausius inequalityPublications associées
Affichage des éléments liés par titre et auteur.
-
Marchesani, Stefano; Olla, Stefano (2020) Document de travail / Working paper
-
Coron, Jean-Luc; Ervedoza, Sylvain; Ghoshal, Shyam; Glass, Olivier; Perrollaz, Vincent (2017) Article accepté pour publication ou publié
-
Lions, Pierre-Louis; Perthame, Benoît; Souganidis, Panagiotis E. (1996) Article accepté pour publication ou publié
-
Marchesani, Stefano; Olla, Stefano (2020) Document de travail / Working paper
-
Olla, Stefano; Even, Nadine (2014) Article accepté pour publication ou publié