• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Mining rare sequential patterns with ASP

Samet, Ahmed; Guyet, Thomas; Negrevergne, Benjamin (2017), Mining rare sequential patterns with ASP, in Lachiche, Nicolas; Vrain, Christel, 27th International Conference on Inductive Logic Programming (ILP 2017), Centre International Universitaire pour la Recherche : Orléans

View/Open
mining_rare.pdf (485.9Kb)
Type
Communication / Conférence
Date
2017
Conference title
27th International Conference on Inductive Logic Programming (ILP 2017)
Conference date
2017-09
Conference city
Orléans
Conference country
France
Book title
27th International Conference on Inductive Logic Programming (ILP 2017)
Book author
Lachiche, Nicolas; Vrain, Christel
Publisher
Centre International Universitaire pour la Recherche
Published in
Orléans
Metadata
Show full item record
Author(s)
Samet, Ahmed
Inria Rennes – Bretagne Atlantique
Guyet, Thomas
Laboratoire d'Informatique - Agrocampus Ouest
Negrevergne, Benjamin cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
This article presents an approach of meaningful rare sequential pattern mining based on the declarative programming paradigm of Answer Set Programming (ASP). The setting of rare sequential pattern mining is introduced. Our ASP approach provides an easy manner to encode expert constraints on expected patterns to cope with the huge amount of meaningless rare patterns. Encodings are presented and quantitatively compared to a procedural baseline. An application on care pathways analysis illustrates the interest of expert constraints encoding.
Subjects / Keywords
rare patterns; sequential patterns; declarative pattern mining; patient care pathways

Related items

Showing items related by title and author.

  • Thumbnail
    Expert Opinion Extraction from a Biomedical Database 
    Samet, Ahmed; Guyet, Thomas; Negrevergne, Benjamin; Dao, Tien-Tuan; Nha Hoang, Tuan; Ho Ba Tho, Marie-Christine (2017) Communication / Conférence
  • Thumbnail
    Recognizing Art Style Automatically in painting with deep learning 
    Lecoutre, Adrian; Negrevergne, Benjamin; Yger, Florian (2017) Communication / Conférence
  • Thumbnail
    Behavioral Pattern Mining for Flexible Processes 
    Acheli, Mehdi (2021-10-25) Thèse
  • Thumbnail
    Training Compact Deep Learning Models for Video Classification Using Circulant Matrices 
    Araújo, Alexandre; Negrevergne, Benjamin; Chevaleyre, Yann; Atif, Jamal (2018) Communication / Conférence
  • Thumbnail
    Fréchet Mean Computation in Graph Space through Projected Block Gradient Descent 
    Boria, Nicolas; Negrevergne, Benjamin; Yger, Florian (2020) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo