
Non-degenerate Liouville tori are KAM stable
Bounemoura, Abed (2016), Non-degenerate Liouville tori are KAM stable, Advances in Mathematics, 292, p. 42-51. 10.1016/j.aim.2016.01.012
View/ Open
Type
Article accepté pour publication ou publiéDate
2016Journal name
Advances in MathematicsVolume
292Publisher
Elsevier
Pages
42-51
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this short note, we prove that a quasi-periodic torus, with a non-resonant frequency (that can be Diophantine or Liouville) and which is invariant by a sufficiently regular Hamiltonian flow, is KAM stable provided it is Kolmogorov non-degenerate. When the Hamiltonian is smooth (respectively Gevrey-smooth, respectively real-analytic), the invariant tori are smooth (respectively Gevrey-smooth, respectively real-analytic). This answers a question raised in a recent work by Eliasson, Fayad and Krikorian [6]. We also take the opportunity to ask other questions concerning the stability of non-resonant invariant quasi-periodic tori in (analytic or smooth) Hamiltonian systems.Subjects / Keywords
Hamiltonian systems; KAM theoryRelated items
Showing items related by title and author.
-
Bounemoura, Abed (2016) Article accepté pour publication ou publié
-
Bounemoura, Abed (2020) Document de travail / Working paper
-
Bounemoura, Abed (2014) Article accepté pour publication ou publié
-
Fischler, Stephane; Bounemoura, Abed (2014) Article accepté pour publication ou publié
-
Bounemoura, Abed; Féjoz, Jacques (2017-06) Article accepté pour publication ou publié